Natural Actor-Critic for Robust Reinforcement Learning with Function
Approximation
- URL: http://arxiv.org/abs/2307.08875v2
- Date: Sun, 10 Dec 2023 18:42:08 GMT
- Title: Natural Actor-Critic for Robust Reinforcement Learning with Function
Approximation
- Authors: Ruida Zhou, Tao Liu, Min Cheng, Dileep Kalathil, P. R. Kumar, Chao
Tian
- Abstract summary: We study robust reinforcement learning (RL) with the goal of determining a well-performing policy that is robust against model mismatch between the training simulator and the testing environment.
We propose two novel uncertainty set formulations, one based on double sampling and the other on an integral probability metric.
We demonstrate the robust performance of the policy learned by our proposed RNAC approach in multiple MuJoCo environments and a real-world TurtleBot navigation task.
- Score: 20.43657369407846
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We study robust reinforcement learning (RL) with the goal of determining a
well-performing policy that is robust against model mismatch between the
training simulator and the testing environment. Previous policy-based robust RL
algorithms mainly focus on the tabular setting under uncertainty sets that
facilitate robust policy evaluation, but are no longer tractable when the
number of states scales up. To this end, we propose two novel uncertainty set
formulations, one based on double sampling and the other on an integral
probability metric. Both make large-scale robust RL tractable even when one
only has access to a simulator. We propose a robust natural actor-critic (RNAC)
approach that incorporates the new uncertainty sets and employs function
approximation. We provide finite-time convergence guarantees for the proposed
RNAC algorithm to the optimal robust policy within the function approximation
error. Finally, we demonstrate the robust performance of the policy learned by
our proposed RNAC approach in multiple MuJoCo environments and a real-world
TurtleBot navigation task.
Related papers
- Learning Optimal Deterministic Policies with Stochastic Policy Gradients [62.81324245896716]
Policy gradient (PG) methods are successful approaches to deal with continuous reinforcement learning (RL) problems.
In common practice, convergence (hyper)policies are learned only to deploy their deterministic version.
We show how to tune the exploration level used for learning to optimize the trade-off between the sample complexity and the performance of the deployed deterministic policy.
arXiv Detail & Related papers (2024-05-03T16:45:15Z) - Probabilistic Reach-Avoid for Bayesian Neural Networks [71.67052234622781]
We show that an optimal synthesis algorithm can provide more than a four-fold increase in the number of certifiable states.
The algorithm is able to provide more than a three-fold increase in the average guaranteed reach-avoid probability.
arXiv Detail & Related papers (2023-10-03T10:52:21Z) - Efficient Action Robust Reinforcement Learning with Probabilistic Policy
Execution Uncertainty [43.55450683502937]
In this paper, we focus on action robust RL with the probabilistic policy execution uncertainty.
We establish the existence of an optimal policy on the action robust MDPs with probabilistic policy execution uncertainty.
We also develop Action Robust Reinforcement Learning with Certificates (ARRLC) algorithm that minimax optimal regret and sample complexity.
arXiv Detail & Related papers (2023-07-15T00:26:51Z) - Constrained Reinforcement Learning via Dissipative Saddle Flow Dynamics [5.270497591225775]
In constrained reinforcement learning (C-RL), an agent seeks to learn from the environment a policy that maximizes the expected cumulative reward.
Several algorithms rooted in sampled-based primal-dual methods have been recently proposed to solve this problem in policy space.
We propose a novel algorithm for constrained RL that does not suffer from these limitations.
arXiv Detail & Related papers (2022-12-03T01:54:55Z) - Model-based Safe Deep Reinforcement Learning via a Constrained Proximal
Policy Optimization Algorithm [4.128216503196621]
We propose an On-policy Model-based Safe Deep RL algorithm in which we learn the transition dynamics of the environment in an online manner.
We show that our algorithm is more sample efficient and results in lower cumulative hazard violations as compared to constrained model-free approaches.
arXiv Detail & Related papers (2022-10-14T06:53:02Z) - Provably Correct Optimization and Exploration with Non-linear Policies [65.60853260886516]
ENIAC is an actor-critic method that allows non-linear function approximation in the critic.
We show that under certain assumptions, the learner finds a near-optimal policy in $O(poly(d))$ exploration rounds.
We empirically evaluate this adaptation and show that it outperforms priors inspired by linear methods.
arXiv Detail & Related papers (2021-03-22T03:16:33Z) - Risk-Sensitive Deep RL: Variance-Constrained Actor-Critic Provably Finds
Globally Optimal Policy [95.98698822755227]
We make the first attempt to study risk-sensitive deep reinforcement learning under the average reward setting with the variance risk criteria.
We propose an actor-critic algorithm that iteratively and efficiently updates the policy, the Lagrange multiplier, and the Fenchel dual variable.
arXiv Detail & Related papers (2020-12-28T05:02:26Z) - Robust Reinforcement Learning using Least Squares Policy Iteration with
Provable Performance Guarantees [3.8073142980733]
This paper addresses the problem of model-free reinforcement learning for Robust Markov Decision Process (RMDP) with large state spaces.
We first propose the Robust Least Squares Policy Evaluation algorithm, which is a multi-step online model-free learning algorithm for policy evaluation.
We then propose Robust Least Squares Policy Iteration (RLSPI) algorithm for learning the optimal robust policy.
arXiv Detail & Related papers (2020-06-20T16:26:50Z) - Guided Constrained Policy Optimization for Dynamic Quadrupedal Robot
Locomotion [78.46388769788405]
We introduce guided constrained policy optimization (GCPO), an RL framework based upon our implementation of constrained policy optimization (CPPO)
We show that guided constrained RL offers faster convergence close to the desired optimum resulting in an optimal, yet physically feasible, robotic control behavior without the need for precise reward function tuning.
arXiv Detail & Related papers (2020-02-22T10:15:53Z) - Robust Reinforcement Learning via Adversarial training with Langevin
Dynamics [51.234482917047835]
We introduce a sampling perspective to tackle the challenging task of training robust Reinforcement Learning (RL) agents.
We present a novel, scalable two-player RL algorithm, which is a sampling variant of the two-player policy method.
arXiv Detail & Related papers (2020-02-14T14:59:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.