Quantum Circuit Ansatz: Patterns of Abstraction and Reuse of Quantum Algorithm Design
- URL: http://arxiv.org/abs/2405.05021v3
- Date: Wed, 12 Jun 2024 08:38:54 GMT
- Title: Quantum Circuit Ansatz: Patterns of Abstraction and Reuse of Quantum Algorithm Design
- Authors: Xiaoyu Guo, Takahiro Muta, Jianjun Zhao,
- Abstract summary: The paper presents a categorized catalog of quantum circuit ansatzes.
Each ansatz is described with details such as intent, motivation, applicability, circuit diagram, implementation, example, and see also.
Practical examples are provided to illustrate their application in quantum algorithm design.
- Score: 3.8425905067219492
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum computing holds the potential to revolutionize various fields by efficiently tackling complex problems. At its core are quantum circuits, sequences of quantum gates manipulating quantum states. The selection of the right quantum circuit ansatz, which defines initial circuit structures and serves as the basis for optimization techniques, is crucial in quantum algorithm design.This paper presents a categorized catalog of quantum circuit ansatzes aimed at supporting quantum algorithm design and implementation. Each ansatz is described with details such as intent, motivation, applicability, circuit diagram, implementation, example, and see also. Practical examples are provided to illustrate their application in quantum algorithm design.The catalog aims to assist quantum algorithm designers by offering insights into the strengths and limitations of different ansatzes, thereby facilitating decision-making for specific tasks.
Related papers
- How quantum and evolutionary algorithms can help each other: two examples [0.0]
We investigate the potential of bio-inspired evolutionary algorithms for designing quantum circuits with specific goals.
We test the robustness of quantum implementations of the cellular automata for different numbers of quantum gates.
An evolutionary algorithm is employed to optimize circuits with respect to a fitness function defined with the Mayer-Wallach entanglement measure.
arXiv Detail & Related papers (2024-08-01T10:36:38Z) - Distributed quantum architecture search [0.0]
Variational quantum algorithms, inspired by neural networks, have become a novel approach in quantum computing.
Quantum architecture search tackles this by adjusting circuit structures along with gate parameters to automatically discover high-performance circuit structures.
We propose an end-to-end distributed quantum architecture search framework, where we aim to automatically design distributed quantum circuit structures for interconnected quantum processing units with specific qubit connectivity.
arXiv Detail & Related papers (2024-03-10T13:28:56Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Dynamic quantum circuit compilation [11.550577505893367]
Recent advancements in quantum hardware have introduced mid-circuit measurements and resets, enabling the reuse of measured qubits.
We present a systematic study of dynamic quantum circuit compilation, a process that transforms static quantum circuits into their dynamic equivalents.
arXiv Detail & Related papers (2023-10-17T06:26:30Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
The anticipated applications of quantum computers span across science and industry.
We present a survey of several potential application areas of quantum algorithms.
We outline the challenges and opportunities in each area in an "end-to-end" fashion.
arXiv Detail & Related papers (2023-10-04T17:53:55Z) - Quantivine: A Visualization Approach for Large-scale Quantum Circuit
Representation and Analysis [31.203764035373677]
We develop Quantivine, an interactive system for exploring and understanding quantum circuits.
A series of novel circuit visualizations are designed to uncover contextual details such as qubit provenance, parallelism, and entanglement.
The effectiveness of Quantivine is demonstrated through two usage scenarios of quantum circuits with up to 100 qubits.
arXiv Detail & Related papers (2023-07-18T04:51:28Z) - Parametric Synthesis of Computational Circuits for Complex Quantum
Algorithms [0.0]
The purpose of our quantum synthesizer is enabling users to implement quantum algorithms using higher-level commands.
The proposed approach for implementing quantum algorithms has a potential application in the field of machine learning.
arXiv Detail & Related papers (2022-09-20T06:25:47Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
We present a technique that pinpoints the sections of a quantum circuit that affect the circuit output the most.
We demonstrate the practicality and efficacy of the proposed technique by applying it to example algorithmic circuits implemented on IBM quantum machines.
arXiv Detail & Related papers (2022-04-12T19:39:31Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Quantum walk processes in quantum devices [55.41644538483948]
We study how to represent quantum walk on a graph as a quantum circuit.
Our approach paves way for the efficient implementation of quantum walks algorithms on quantum computers.
arXiv Detail & Related papers (2020-12-28T18:04:16Z) - QUANTIFY: A framework for resource analysis and design verification of
quantum circuits [69.43216268165402]
QUANTIFY is an open-source framework for the quantitative analysis of quantum circuits.
It is based on Google Cirq and is developed with Clifford+T circuits in mind.
For benchmarking purposes QUANTIFY includes quantum memory and quantum arithmetic circuits.
arXiv Detail & Related papers (2020-07-21T15:36:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.