Quantum speed limit for states and observables of perturbed open systems
- URL: http://arxiv.org/abs/2307.09118v2
- Date: Tue, 27 Aug 2024 09:20:11 GMT
- Title: Quantum speed limit for states and observables of perturbed open systems
- Authors: Benjamin Yadin, Satoya Imai, Otfried Gühne,
- Abstract summary: We describe the divergence of a perturbed open system from its unperturbed trajectory.
In the case of weak coupling, we show that the divergence speed is bounded by the quantum Fisher information under a perturbing Hamiltonian.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum speed limits provide upper bounds on the rate with which a quantum system can move away from its initial state. Here, we provide a different kind of speed limit, describing the divergence of a perturbed open system from its unperturbed trajectory. In the case of weak coupling, we show that the divergence speed is bounded by the quantum Fisher information under a perturbing Hamiltonian, up to an error which can be estimated from system and bath timescales. We give two applications of our speed limit. Firstly, it enables experimental estimation of quantum Fisher information in the presence of decoherence that is not fully characterised. Secondly, it implies that large quantum work fluctuations are necessary for a thermal system to be driven quickly out of equilibrium under a quench. Moreover, it can be used to bound the response to perturbations of expectation values of observables in open systems.
Related papers
- Quantum Speed limit on the production of quantumness of observables [0.0]
Non-classical features of quantum systems can degrade when subjected to environment and noise.
We prove speed limits on the quantumness of observable as the norm of the commutator of two given observables.
arXiv Detail & Related papers (2024-09-20T10:02:39Z) - Quantum highway: Observation of minimal and maximal speed limits for few and many-body states [19.181412608418608]
Inspired by the energy-time uncertainty principle, bounds have been demonstrated on the maximal speed at which a quantum state can change.
We show that one can test the known quantum speed limits and that modifying a single Hamiltonian parameter allows the observation of the crossover of the different bounds on the dynamics.
arXiv Detail & Related papers (2024-08-21T18:00:07Z) - A New Framework for Quantum Phases in Open Systems: Steady State of Imaginary-Time Lindbladian Evolution [18.47824812164327]
We introduce the concept of imaginary-time Lindbladian evolution as an alternative framework.
This new approach defines gapped quantum phases in open systems through the spectrum properties of the imaginary-Liouville superoperator.
arXiv Detail & Related papers (2024-08-06T14:53:40Z) - Quantum speed limits for an open system in contact with a thermal bath [0.0]
We prove rigorous bounds on the speed of quantum evolution for a quantum system coupled to a thermal bath.
The bounds are formulated in terms of expectation values of few-body observables derived from the system-bath Hamiltonian.
arXiv Detail & Related papers (2023-02-27T10:12:43Z) - Quantum Speed Limit for Change of Basis [55.500409696028626]
We extend the notion of quantum speed limits to collections of quantum states.
For two-qubit systems, we show that the fastest transformation implements two Hadamards and a swap of the qubits simultaneously.
For qutrit systems the evolution time depends on the particular type of the unbiased basis.
arXiv Detail & Related papers (2022-12-23T14:10:13Z) - Observation of partial and infinite-temperature thermalization induced
by repeated measurements on a quantum hardware [62.997667081978825]
We observe partial and infinite-temperature thermalization on a quantum superconducting processor.
We show that the convergence does not tend to a completely mixed (infinite-temperature) state, but to a block-diagonal state in the observable basis.
arXiv Detail & Related papers (2022-11-14T15:18:11Z) - Speed limits on correlations in bipartite quantum systems [1.3854111346209868]
We derive speed limits on correlations such as entanglement, Bell-CHSH correlation, and quantum mutual information of quantum systems evolving under dynamical processes.
Some of the speed limits we derived are actually attainable and hence these bounds can be considered to be tight.
arXiv Detail & Related papers (2022-07-12T16:23:28Z) - Realizing quantum speed limit in open system with a PT-symmetric
trapped-ion qubit [8.108489903565584]
We experimentally confirm the proposal in a single dissipative qubit system.
We find that the evolution time of its reversal operation increases with the increasing dissipation intensity.
arXiv Detail & Related papers (2022-06-02T09:02:47Z) - Quantum nonreciprocal interactions via dissipative gauge symmetry [18.218574433422535]
One-way nonreciprocal interactions between two quantum systems are typically described by a cascaded quantum master equation.
We present a new approach for obtaining nonreciprocal quantum interactions that is completely distinct from cascaded quantum systems.
arXiv Detail & Related papers (2022-03-17T15:34:40Z) - Observing crossover between quantum speed limits [0.0]
Two well-known quantum speed limits are the Mandelstam-Tamm and the Margolus-Levitin bounds.
Here, we test concurrently both limits in a multi-level system by following the motion of a single atom in an optical trap.
Our data reveal two different regimes: one where the Mandelstam-Tamm limit constrains the evolution at all times, and a second where a crossover to the Margolus-Levitin limit is manifested at longer times.
arXiv Detail & Related papers (2021-04-12T17:01:47Z) - Jumptime unraveling of Markovian open quantum systems [68.8204255655161]
We introduce jumptime unraveling as a distinct description of open quantum systems.
quantum jump trajectories emerge, physically, from continuous quantum measurements.
We demonstrate that quantum trajectories can also be ensemble-averaged at specific jump counts.
arXiv Detail & Related papers (2020-01-24T09:35:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.