Nanowire-based Integrated Photonics for Quantum Information and Quantum
Sensing
- URL: http://arxiv.org/abs/2307.09178v1
- Date: Tue, 18 Jul 2023 11:54:19 GMT
- Title: Nanowire-based Integrated Photonics for Quantum Information and Quantum
Sensing
- Authors: Jin Chang, Jun Gao, Iman Esmaeil Zadeh, Ali W. Elshaari, and Val
Zwiller
- Abstract summary: We systematically summarize the working theory, material platform, fabrication process, and game-changing applications enabled by state-of-the-art quantum dots.
We highlight several burgeoning quantum photonics applications using nanowires and discuss development trends of integrated quantum photonics.
- Score: 5.594103291124019
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: At the core of quantum photonic information processing and sensing, two major
building pillarsare single-photon emitters and single-photon detectors. In this
review, we systematically summarize the working theory, material platform,
fabrication process, and game-changing applications enabled by state-of-the-art
quantum dots in nanowire emitters and superconducting nanowire single-photon
detectors. Such nanowire-based quantum hardware offers promising properties for
modern quantum optics experiments.We highlight several burgeoning quantum
photonics applications using nanowires and discuss development trends of
integrated quantum photonics. Also, we propose quantum information processing
and sensing experiments for the quantum optics community, and future
interdisciplinary applications.
Related papers
- Quantum dots for photonic quantum information technology [0.0]
We discuss in depth the great potential of quantum dots (QDs) in photonic quantum information technology.
QDs form a key resource for the implementation of quantum communication networks and photonic quantum computers.
We present the most promising concepts for quantum light sources and photonic quantum circuits that include single QDs as active elements.
arXiv Detail & Related papers (2023-09-08T09:34:49Z) - Quantum Optical Memory for Entanglement Distribution [52.77024349608834]
Entanglement of quantum states over long distances can empower quantum computing, quantum communications, and quantum sensing.
Over the past two decades, quantum optical memories with high fidelity, high efficiencies, long storage times, and promising multiplexing capabilities have been developed.
arXiv Detail & Related papers (2023-04-19T03:18:51Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Dynamical photon-photon interaction mediated by a quantum emitter [1.9677315976601693]
Single photons constitute a main platform in quantum science and technology.
Main challenge in quantum photonics is how to generate advanced entangled resource states and efficient light-matter interfaces.
We utilize the efficient and coherent coupling of a single quantum emitter to a nanophotonic waveguide for realizing quantum nonlinear interaction between single-photon wavepackets.
arXiv Detail & Related papers (2021-12-13T17:33:30Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Multiplexed Single Photons from Deterministically Positioned Nanowire
Quantum Dots [0.0]
Solid-state quantum emitters are excellent sources of on-demand indistinguishable or entangled photons.
We present a scalable technique to multiplex streams of photons from multiple independent quantum dots, on-chip, into a fiber network for use off-chip.
arXiv Detail & Related papers (2020-05-11T18:10:59Z) - Coupling colloidal quantum dots to gap waveguides [62.997667081978825]
coupling between single photon emitters and integrated photonic circuits is an emerging topic relevant for quantum information science and other nanophotonic applications.
We investigate the coupling between a hybrid system of colloidal quantum dots and propagating gap modes of a silicon nitride waveguide system.
arXiv Detail & Related papers (2020-03-30T21:18:27Z) - Hybrid device for quantum nanophotonics [0.0]
Single photons, entangled photons and quantum light in general have been coupled to integrated approaches coming from classical optics.
In this article, we describe our recent advances using elongated optical nano-fibers.
We also present our latest results on nanocrystals made of perovskites and discuss some of their quantum properties.
arXiv Detail & Related papers (2020-01-28T17:37:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.