Neuromorphic spintronics simulated using an unconventional data-driven
Thiele equation approach
- URL: http://arxiv.org/abs/2307.09262v1
- Date: Tue, 18 Jul 2023 13:47:57 GMT
- Title: Neuromorphic spintronics simulated using an unconventional data-driven
Thiele equation approach
- Authors: Anatole Moureaux, Simon de Wergifosse, Chlo\'e Chopin and Flavio Abreu
Araujo
- Abstract summary: We develop a quantitative description of the dynamics of spin-torque vortex nano-oscillators (STVOs) through an unconventional model.
Our approach is promising for accelerating the design of STVO-based neuromorphic computing devices.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this study, we developed a quantitative description of the dynamics of
spin-torque vortex nano-oscillators (STVOs) through an unconventional model
based on the combination of the Thiele equation approach (TEA) and data from
micromagnetic simulations (MMS). Solving the STVO dynamics with our analytical
model allows to accelerate the simulations by 9 orders of magnitude compared to
MMS while reaching the same level of accuracy. Here, we showcase our model by
simulating a STVO-based neural network for solving a classification task. We
assess its performance with respect to the input signal current intensity and
the level of noise that might affect such a system. Our approach is promising
for accelerating the design of STVO-based neuromorphic computing devices while
decreasing drastically its computational cost.
Related papers
- A Realistic Simulation Framework for Analog/Digital Neuromorphic Architectures [73.65190161312555]
ARCANA is a spiking neural network simulator designed to account for the properties of mixed-signal neuromorphic circuits.
We show how the results obtained provide a reliable estimate of the behavior of the spiking neural network trained in software.
arXiv Detail & Related papers (2024-09-23T11:16:46Z) - Latent Space Energy-based Neural ODEs [73.01344439786524]
This paper introduces a novel family of deep dynamical models designed to represent continuous-time sequence data.
We train the model using maximum likelihood estimation with Markov chain Monte Carlo.
Experiments on oscillating systems, videos and real-world state sequences (MuJoCo) illustrate that ODEs with the learnable energy-based prior outperform existing counterparts.
arXiv Detail & Related papers (2024-09-05T18:14:22Z) - A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics [73.35846234413611]
In drug discovery, molecular dynamics (MD) simulation provides a powerful tool for predicting binding affinities, estimating transport properties, and exploring pocket sites.
We propose NeuralMD, the first machine learning (ML) surrogate that can facilitate numerical MD and provide accurate simulations in protein-ligand binding dynamics.
We demonstrate the efficiency and effectiveness of NeuralMD, achieving over 1K$times$ speedup compared to standard numerical MD simulations.
arXiv Detail & Related papers (2024-01-26T09:35:17Z) - Spintronics for image recognition: performance benchmarking via
ultrafast data-driven simulations [4.2412715094420665]
We present a demonstration of image classification using an echo-state network (ESN) relying on a single simulated spintronic nanostructure.
We employ an ultrafast data-driven simulation framework called the data-driven Thiele equation approach to simulate the STVO dynamics.
We showcase the versatility of our solution by successfully applying it to solve classification challenges with the MNIST, EMNIST-letters and Fashion MNIST datasets.
arXiv Detail & Related papers (2023-08-10T18:09:44Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Conditional Generative Models for Simulation of EMG During Naturalistic
Movements [45.698312905115955]
We present a conditional generative neural network trained adversarially to generate motor unit activation potential waveforms.
We demonstrate the ability of such a model to predictively interpolate between a much smaller number of numerical model's outputs with a high accuracy.
arXiv Detail & Related papers (2022-11-03T14:49:02Z) - Statistical and machine learning approaches for prediction of long-time
excitation energy transfer dynamics [0.0]
The objective here is to demonstrate whether models such as SARIMA, CatBoost, Prophet, convolutional and recurrent neural networks are able to bypass this requirement.
Our results suggest that the SARIMA model can serve as a computationally inexpensive yet accurate way to predict long-time dynamics.
arXiv Detail & Related papers (2022-10-25T16:50:26Z) - Realization of the Trajectory Propagation in the MM-SQC Dynamics by
Using Machine Learning [4.629634111796585]
We apply the supervised machine learning (ML) approach to realize the trajectory-based nonadiabatic dynamics.
The proposed idea is proven to be reliable and accurate in the simulations of the dynamics of several site-exciton electron-phonon coupling models.
arXiv Detail & Related papers (2022-07-11T01:23:36Z) - Automatic Evolution of Machine-Learning based Quantum Dynamics with
Uncertainty Analysis [4.629634111796585]
The long short-term memory recurrent neural network (LSTM-RNN) models are used to simulate the long-time quantum dynamics.
This work builds an effective machine learning approach to simulate the dynamics evolution of open quantum systems.
arXiv Detail & Related papers (2022-05-07T08:53:55Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
We study the capability of artificial neural network models to emulate storm surge based on the storm track/size/intensity history.
This study presents a neural network model that can predict storm surge, informed by a database of synthetic storm simulations.
arXiv Detail & Related papers (2022-04-18T23:42:18Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process (INP) is a deep active learning framework for simulations and with active learning approaches.
For active learning, we propose a novel acquisition function, Latent Information Gain (LIG), calculated in the latent space of NP based models.
The results demonstrate STNP outperforms the baselines in the learning setting and LIG achieves the state-of-the-art for active learning.
arXiv Detail & Related papers (2021-06-05T01:31:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.