論文の概要: The Role of Transparency in Repeated First-Price Auctions with Unknown Valuations
- arxiv url: http://arxiv.org/abs/2307.09478v2
- Date: Thu, 21 Mar 2024 10:28:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-22 20:29:39.887915
- Title: The Role of Transparency in Repeated First-Price Auctions with Unknown Valuations
- Title(参考訳): 未確認値付き1次競売における透明性の役割
- Authors: Nicolò Cesa-Bianchi, Tommaso Cesari, Roberto Colomboni, Federico Fusco, Stefano Leonardi,
- Abstract要約: 本研究では, 単価オークションにおける落札者に対する後悔の問題について検討する。
我々の主な貢献は、競売の並行性の観点からのミニマックス後悔の対数的要因の完全な特徴である。
これらのミニマックスレートは、透明性と環境の性質の間の相互作用が、ファーストプライスのオークションで最適な入札を学べる速度にどのように影響するかを明らかにしている。
- 参考スコア(独自算出の注目度): 21.491106045668054
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the problem of regret minimization for a single bidder in a sequence of first-price auctions where the bidder discovers the item's value only if the auction is won. Our main contribution is a complete characterization, up to logarithmic factors, of the minimax regret in terms of the auction's \emph{transparency}, which controls the amount of information on competing bids disclosed by the auctioneer at the end of each auction. Our results hold under different assumptions (stochastic, adversarial, and their smoothed variants) on the environment generating the bidder's valuations and competing bids. These minimax rates reveal how the interplay between transparency and the nature of the environment affects how fast one can learn to bid optimally in first-price auctions.
- Abstract(参考訳): 本研究では,競売者が競売に勝った場合にのみ商品の価値を発見できる一価オークションにおいて,単価入札者に対する後悔の最小化の問題について検討する。
我々の主な貢献は、競売の終わりに競売業者が開示した競売に関する情報の量を制御する競売の「emph{transparency}」におけるミニマックス後悔の対数的要因の完全な特徴である。
我々の結果は、入札者の評価と競合する入札を生み出す環境に関する異なる仮定(確率的、敵対的、およびそれらの滑らかな変種)の下で成り立つ。
これらのミニマックスレートは、透明性と環境の性質の間の相互作用が、ファーストプライスのオークションで最適な入札を学べる速度にどのように影響するかを明らかにしている。
関連論文リスト
- Randomized Truthful Auctions with Learning Agents [10.39657928150242]
本研究では, エージェントが未学習の学習を用いて, 繰り返しオークションに参加する環境について検討する。
競売者が非回帰入札アルゴリズムを用いて第2価格の競売に参加する場合、勝者が真に競売に収束しないことが示される。
我々は,第2代競売の収益と競売との収益を比べて,エムオークションのコンセプトを定義した。
論文 参考訳(メタデータ) (2024-11-14T15:28:40Z) - Autobidders with Budget and ROI Constraints: Efficiency, Regret, and Pacing Dynamics [53.62091043347035]
オンライン広告プラットフォームで競合するオートバイディングアルゴリズムのゲームについて検討する。
本稿では,全ての制約を満たすことを保証し,個人の後悔を解消する勾配に基づく学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-01-30T21:59:30Z) - Leveraging the Hints: Adaptive Bidding in Repeated First-Price Auctions [42.002983450368134]
プライスオークションでの競売の仕方について検討する。
第二価格のオークションとは異なり、個人価値を真に入札することはもはや最適ではない。
1つは1つの点予測が可能であり、もう1つはヒント間隔が利用可能である。
論文 参考訳(メタデータ) (2022-11-05T19:20:53Z) - A Reinforcement Learning Approach in Multi-Phase Second-Price Auction
Design [158.0041488194202]
多相第2価格オークションにおけるリザーブ価格の最適化について検討する。
売り手の視点からは、潜在的に非現実的な入札者の存在下で、環境を効率的に探索する必要がある。
第三に、売り手のステップごとの収益は未知であり、非線形であり、環境から直接観察することさえできない。
論文 参考訳(メタデータ) (2022-10-19T03:49:05Z) - Benefits of Permutation-Equivariance in Auction Mechanisms [90.42990121652956]
競売人の収益を最大化しつつ、競売人の過去の後悔を最小限にする競売メカニズムは、経済学において重要であるが複雑な問題である。
ニューラルネットワークによる最適なオークションメカニズムの学習を通じて、注目すべき進歩が達成されている。
論文 参考訳(メタデータ) (2022-10-11T16:13:25Z) - Fast Rate Learning in Stochastic First Price Bidding [0.0]
ファーストプライスのオークションは、プログラム広告におけるビックレーのオークションに基づく伝統的な入札アプローチを大きく置き換えている。
対戦相手の最大入札分布が分かっている場合, 後悔度を著しく低くする方法を示す。
我々のアルゴリズムは、様々な入札分布の文献で提案されている選択肢よりもはるかに高速に収束する。
論文 参考訳(メタデータ) (2021-07-05T07:48:52Z) - Towards Prior-Free Approximately Truthful One-Shot Auction Learning via
Differential Privacy [0.0]
事前依存した設定で複数項目のオークションを見つけるためのディープラーニング技術。
我々は、RegretNetアプローチを事前のフリー設定に適用するように修正する。
予備実験結果と定性解析について述べる。
論文 参考訳(メタデータ) (2021-03-31T23:22:55Z) - ProportionNet: Balancing Fairness and Revenue for Auction Design with
Deep Learning [55.76903822619047]
本研究では,強力なインセンティブ保証を備えた収益最大化オークションの設計について検討する。
我々は、高い収益と強力なインセンティブ保証を維持しつつ、公平性の懸念に対処するため、深層学習を用いてオークションを近似する手法を拡張した。
論文 参考訳(メタデータ) (2020-10-13T13:54:21Z) - Learning to Bid Optimally and Efficiently in Adversarial First-price
Auctions [40.30925727499806]
我々は,$widetildeO(sqrtT)$ regretを達成する,最初のミニマックス最適オンライン入札アルゴリズムを開発した。
Verizon Mediaから得られた3つの実世界の1価オークションデータセットを用いて,本アルゴリズムを検証した。
論文 参考訳(メタデータ) (2020-07-09T05:40:39Z) - Optimal No-regret Learning in Repeated First-price Auctions [38.908235632001116]
オンライン学習を反復した初価オークションで研究する。
我々は,ほぼ最適の$widetildeO(sqrtT)$ regret boundを達成するための最初の学習アルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-03-22T03:32:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。