Entangling distant systems via universal nonadiabatic passage
- URL: http://arxiv.org/abs/2410.23699v1
- Date: Thu, 31 Oct 2024 07:43:28 GMT
- Title: Entangling distant systems via universal nonadiabatic passage
- Authors: Zhu-yao Jin, Jun Jing,
- Abstract summary: We derive universal nonadiabatic passages in an $M+N$-dimensional discrete system.
In applications, a transitionless dynamics determined by the von Neumann equation with the time-dependent system Hamiltonian can be formulated to entangle distant qubits.
Our work develops a full-fledged theory for nonadiabatic state engineering in quantum information processing.
- Score: 0.0
- License:
- Abstract: In this work, we derive universal nonadiabatic passages in an $M+N$-dimensional discrete system, where $M$ and $N$ denote the degrees of freedom for the assistant and working subspaces, respectively, that could be separated due to rotation or energy. A systematic method is provided to construct parametric ancillary bases for the nonadiabatic passages, which can set up connection between arbitrary initial and target states. In applications, a transitionless dynamics determined by the von Neumann equation with the time-dependent system Hamiltonian can be formulated to entangle distant qubits, as a vital prerequisite for the practical quantum networks. Using tunable longitudinal interaction between two distant qubits, the superconducting system evolves to the single-excitation Bell state with a fidelity as high as $F=0.997$ from the ground state. When the longitudinal interaction is switched off, the single-excitation Bell state can be further converted to the double-excitation Bell state with $F=0.982$ by parametric driving. Moreover, our protocol can be adapted to generate the Greenberger-Horne-Zeilinger state for $N$ qubits with $N$ steps. Our work develops a full-fledged theory for nonadiabatic state engineering in quantum information processing, which is flexible in target selection and robust against the external noise.
Related papers
- Generating magnon Bell states via parity measurement [0.0]
We propose a scheme to entangle two magnon modes based on parity measurement.
In particular, we consider a system that two yttrium-iron-garnet spheres are coupled to a $V$-type superconducting qutrit.
arXiv Detail & Related papers (2024-01-22T04:36:39Z) - Exact Results for a Boundary-Driven Double Spin Chain and Resource-Efficient Remote Entanglement Stabilization [15.902631337426316]
We derive an exact solution for the steady state of a setup where two $XX$-coupled $N$-qubit spin chains are subject to boundary Rabi drives.
For a wide range of parameters, this system has a pure entangled steady state.
arXiv Detail & Related papers (2023-07-18T17:59:15Z) - Dissipative preparation and stabilization of many-body quantum states in
a superconducting qutrit array [55.41644538483948]
We present and analyze a protocol for driven-dissipatively preparing and stabilizing a manifold of quantum manybody entangled states.
We perform theoretical modeling of this platform via pulse-level simulations based on physical features of real devices.
Our work shows the capacity of driven-dissipative superconducting cQED systems to host robust and self-corrected quantum manybody states.
arXiv Detail & Related papers (2023-03-21T18:02:47Z) - Correspondence between open bosonic systems and stochastic differential
equations [77.34726150561087]
We show that there can also be an exact correspondence at finite $n$ when the bosonic system is generalized to include interactions with the environment.
A particular system with the form of a discrete nonlinear Schr"odinger equation is analyzed in more detail.
arXiv Detail & Related papers (2023-02-03T19:17:37Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Multi-squeezed state generation and universal bosonic control via a
driven quantum Rabi model [68.8204255655161]
Universal control over a bosonic degree of freedom is key in the quest for quantum-based technologies.
Here we consider a single ancillary two-level system, interacting with the bosonic mode of interest via a driven quantum Rabi model.
We show that it is sufficient to induce the deterministic realization of a large class of Gaussian and non-Gaussian gates, which in turn provide universal bosonic control.
arXiv Detail & Related papers (2022-09-16T14:18:53Z) - Decoherence and energy flow in the sunburst quantum Ising model [0.0]
We study the post-quench unitary dynamics of a quantum sunburst spin model composed of a transverse-field quantum Ising ring.
We characterize the decoherence and the energy storage in the external qubits, which may be interpreted as a probing apparatus for the inner Ising ring.
arXiv Detail & Related papers (2022-05-02T20:55:55Z) - Single temporal-pulse-modulated parameterized controlled-phase gate for
Rydberg atoms [1.6114012813668934]
We propose an adiabatic protocol for implementing a controlled-phase gate CZ$_theta$ with continuous $theta$ of neutral atoms.
For a wide range of $theta$, we can obtain the fidelity of CZ$_theta$ gate over $99.7%$ in less than $1mu$s.
arXiv Detail & Related papers (2022-01-16T07:40:26Z) - Long-lived Bell states in an array of optical clock qubits [0.0]
We create entanglement on an optical clock transition using optical tweezers and adiabatic Rydberg dressing.
We find that the coherence of the Bell state has a lifetime of $tau_bc = 4.2(6)$ s via parity correlations.
Such Bell states can be useful for enhancing metrological stability and bandwidth.
arXiv Detail & Related papers (2021-11-29T16:10:30Z) - Pulsed multireservoir engineering for a trapped ion with applications to
state synthesis and quantum Otto cycles [68.8204255655161]
Reservoir engineering is a remarkable task that takes dissipation and decoherence as tools rather than impediments.
We develop a collisional model to implement reservoir engineering for the one-dimensional harmonic motion of a trapped ion.
Having multiple internal levels, we show that multiple reservoirs can be engineered, allowing for more efficient synthesis of well-known non-classical states of motion.
arXiv Detail & Related papers (2021-11-26T08:32:39Z) - Method of spectral Green functions in driven open quantum dynamics [77.34726150561087]
A novel method based on spectral Green functions is presented for the simulation of driven open quantum dynamics.
The formalism shows remarkable analogies to the use of Green functions in quantum field theory.
The method dramatically reduces computational cost compared with simulations based on solving the full master equation.
arXiv Detail & Related papers (2020-06-04T09:41:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.