論文の概要: Enhancing Evacuation Planning through Multi-Agent Simulation and
Artificial Intelligence: Understanding Human Behavior in Hazardous
Environments
- arxiv url: http://arxiv.org/abs/2307.09485v1
- Date: Sun, 11 Jun 2023 08:13:42 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-23 17:02:28.738249
- Title: Enhancing Evacuation Planning through Multi-Agent Simulation and
Artificial Intelligence: Understanding Human Behavior in Hazardous
Environments
- Title(参考訳): マルチエージェントシミュレーションと人工知能による避難計画の強化--危険環境における人間行動の理解
- Authors: Afnan Alazbah and Khalid Fakeeh and Osama Rabie
- Abstract要約: 本稿では人工知能(AI)技術,特にマルチエージェントシステム(MAS)を用いて避難シミュレーションモデルを構築した。
本研究の目的は、このような苦しい状況下で、個人がどのように反応し、反応するかについての理解を深めることである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper focuses on the crucial task of addressing the evacuation of
hazardous places, which holds great importance for coordinators, event hosts,
and authorities. To facilitate the development of effective solutions, the
paper employs Artificial Intelligence (AI) techniques, specifically Multi-Agent
Systems (MAS), to construct a simulation model for evacuation. NetLogo is
selected as the simulation tool of choice due to its ability to provide a
comprehensive understanding of human behaviour in distressing situations within
hazardous environments. The primary objective of this paper is to enhance our
comprehension of how individuals react and respond during such distressing
situations. By leveraging AI and MAS, the simulation model aims to capture the
complex dynamics of evacuation scenarios, enabling policymakers and emergency
planners to make informed decisions and implement more efficient and effective
evacuation strategies. This paper endeavours to contribute to the advancement
of evacuation planning and ultimately improve the safety and well-being of
individuals in hazardous places
- Abstract(参考訳): 本稿では, コーディネーター, イベント開催者, 当局にとって重要な, 有害な場所の避難に対処する重要な課題に焦点をあてる。
効率的なソリューションの開発を容易にするため,我々は人工知能(AI)技術,特にマルチエージェントシステム(MAS)を用いて避難シミュレーションモデルを構築した。
netlogoは、危険な環境における苦難状況における人間の行動の包括的理解を提供する能力により、選択のシミュレーションツールとして選択される。
本研究の目的は,このような危機的状況において,個人の反応や反応の理解を深めることである。
AIとMASを活用することで、シミュレーションモデルは避難シナリオの複雑なダイナミクスを捉え、政策立案者と緊急計画立案者が情報的な決定を行い、より効率的で効果的な避難戦略を実現することを目的としている。
本研究は, 避難計画の進展に寄与し, 最終的には危険地における個人の安全と幸福を向上させることを目的とする。
関連論文リスト
- EAIRiskBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [47.69642609574771]
EAI(Embodied AI)は、高度なAIモデルを現実世界のインタラクションのための物理的なエンティティに統合する。
高レベルのタスク計画のためのEAIエージェントの"脳"としてのファンデーションモデルは、有望な結果を示している。
しかし、これらのエージェントの物理的環境への展開は、重大な安全性上の課題を呈している。
EAIRiskBenchは、EAIシナリオにおける自動物理的リスクアセスメントのための新しいフレームワークである。
論文 参考訳(メタデータ) (2024-08-08T13:19:37Z) - Intercepting Unauthorized Aerial Robots in Controlled Airspace Using Reinforcement Learning [2.519319150166215]
制御空域における無人航空機(UAV)の増殖は重大なリスクをもたらす。
この作業は、強化学習(RL)を用いることで、そのような脅威を管理することのできる堅牢で適応的なシステムの必要性に対処する。
固定翼UAV追跡エージェントの訓練にRLを用いる新しい手法を提案する。
論文 参考訳(メタデータ) (2024-07-09T14:45:47Z) - Tradeoffs When Considering Deep Reinforcement Learning for Contingency Management in Advanced Air Mobility [0.0]
航空輸送は、Advanced Air Mobility (AAM)の導入により、世界中で急速に進化している。
運用上の安全性と効率の目標を達成するためには、自動化のレベルが増加する必要がある。
本稿では,複雑・高次元環境において有望な性能を示す深層強化学習(DRL)の利用について検討する。
論文 参考訳(メタデータ) (2024-06-28T19:09:55Z) - CrisisSense-LLM: Instruction Fine-Tuned Large Language Model for Multi-label Social Media Text Classification in Disaster Informatics [49.2719253711215]
本研究では,事前学習型大規模言語モデル(LLM)の強化による災害テキスト分類への新たなアプローチを提案する。
本手法では,災害関連ツイートから包括的インストラクションデータセットを作成し,それをオープンソース LLM の微調整に用いる。
この微調整モデルでは,災害関連情報の種類,情報化,人的援助の関与など,複数の側面を同時に分類することができる。
論文 参考訳(メタデータ) (2024-06-16T23:01:10Z) - Asset-centric Threat Modeling for AI-based Systems [7.696807063718328]
本稿では、AI関連資産、脅威、対策、残留リスクの定量化のためのアプローチおよびツールであるThreatFinderAIを提案する。
このアプローチの実用性を評価するため、参加者はAIベースのヘルスケアプラットフォームのサイバーセキュリティ専門家によって開発された脅威モデルを再現するよう命じられた。
全体として、ソリューションのユーザビリティはよく認識され、脅威の識別とリスクの議論を効果的にサポートする。
論文 参考訳(メタデータ) (2024-03-11T08:40:01Z) - HAZARD Challenge: Embodied Decision Making in Dynamically Changing
Environments [93.94020724735199]
HAZARDは、火災、洪水、風などの3つの予期せぬ災害シナリオで構成されている。
このベンチマークにより、さまざまなパイプラインで自律エージェントの意思決定能力を評価することができる。
論文 参考訳(メタデータ) (2024-01-23T18:59:43Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
制御可能なクローズドループ安全クリティカルシミュレーションフレームワークであるSAFE-SIMを紹介する。
提案手法は,1)現実の環境を深く反映した現実的な長距離安全クリティカルシナリオの生成,2)より包括的でインタラクティブな評価のための制御可能な敵行動の提供,の2つの利点をもたらす。
複数のプランナにまたがるnuScenesとnuPlanデータセットを使用して、我々のフレームワークを実証的に検証し、リアリズムと制御性の両方の改善を実証した。
論文 参考訳(メタデータ) (2023-12-31T04:14:43Z) - AI-Based Energy Transportation Safety: Pipeline Radial Threat Estimation
Using Intelligent Sensing System [52.93806509364342]
本稿では,分散光ファイバーセンシング技術に基づくエネルギーパイプラインの放射状脅威推定手法を提案する。
本稿では,包括的信号特徴抽出のための連続的マルチビュー・マルチドメイン機能融合手法を提案する。
本研究では,事前学習モデルによる伝達学習の概念を取り入れ,認識精度と学習効率の両立を図る。
論文 参考訳(メタデータ) (2023-12-18T12:37:35Z) - Constrained Reinforcement Learning for Robotics via Scenario-Based
Programming [64.07167316957533]
DRLをベースとしたエージェントの性能を最適化し,その動作を保証することが重要である。
本稿では,ドメイン知識を制約付きDRLトレーニングループに組み込む新しい手法を提案する。
我々の実験は、専門家の知識を活用するために我々のアプローチを用いることで、エージェントの安全性と性能が劇的に向上することを示した。
論文 参考訳(メタデータ) (2022-06-20T07:19:38Z) - A deep Q-Learning based Path Planning and Navigation System for
Firefighting Environments [3.24890820102255]
ストレス誘発性不整合と不安に免疫を持つQ-ラーニングに基づく深層エージェントを提案する。
概念実証として、Unreal Engineと呼ばれるゲームエンジンの構造的な火災を模倣する。
体験リプレイを利用して学習プロセスを加速し、エージェントの学習を人間由来の体験で増強する。
論文 参考訳(メタデータ) (2020-11-12T15:43:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。