論文の概要: Tradeoffs When Considering Deep Reinforcement Learning for Contingency Management in Advanced Air Mobility
- arxiv url: http://arxiv.org/abs/2407.00197v1
- Date: Fri, 28 Jun 2024 19:09:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 06:00:32.396660
- Title: Tradeoffs When Considering Deep Reinforcement Learning for Contingency Management in Advanced Air Mobility
- Title(参考訳): 高度空気移動における集中管理のための深層強化学習を考慮したトレードオフ
- Authors: Luis E. Alvarez, Marc W. Brittain, Steven D. Young,
- Abstract要約: 航空輸送は、Advanced Air Mobility (AAM)の導入により、世界中で急速に進化している。
運用上の安全性と効率の目標を達成するためには、自動化のレベルが増加する必要がある。
本稿では,複雑・高次元環境において有望な性能を示す深層強化学習(DRL)の利用について検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Air transportation is undergoing a rapid evolution globally with the introduction of Advanced Air Mobility (AAM) and with it comes novel challenges and opportunities for transforming aviation. As AAM operations introduce increasing heterogeneity in vehicle capabilities and density, increased levels of automation are likely necessary to achieve operational safety and efficiency goals. This paper focuses on one example where increased automation has been suggested. Autonomous operations will need contingency management systems that can monitor evolving risk across a span of interrelated (or interdependent) hazards and, if necessary, execute appropriate control interventions via supervised or automated decision making. Accommodating this complex environment may require automated functions (autonomy) that apply artificial intelligence (AI) techniques that can adapt and respond to a quickly changing environment. This paper explores the use of Deep Reinforcement Learning (DRL) which has shown promising performance in complex and high-dimensional environments where the objective can be constructed as a sequential decision-making problem. An extension of a prior formulation of the contingency management problem as a Markov Decision Process (MDP) is presented and uses a DRL framework to train agents that mitigate hazards present in the simulation environment. A comparison of these learning-based agents and classical techniques is presented in terms of their performance, verification difficulties, and development process.
- Abstract(参考訳): 航空輸送は、Advanced Air Mobility (AAM)の導入により、世界中で急速に進化しており、航空を変革する新たな課題と機会がもたらされている。
AAMの運用は、車両能力と密度の不均一性の増加をもたらすため、運転安全性と効率の目標を達成するためには、自動化のレベルが増加する必要がある。
本稿では,自動化の促進を示唆する一例に焦点をあてる。
自律的なオペレーションには、関係する(あるいは相互依存する)ハザードをまたいで進化するリスクを監視し、必要に応じて、監督されたあるいは自動的な意思決定を通じて適切な制御介入を実行する、緊急管理システムが必要です。
この複雑な環境を調節するには、急速に変化する環境に適応して対応できる人工知能(AI)技術を適用する自動化機能(自律性)が必要となるかもしれない。
本稿では, 逐次的意思決定問題として目的を構築可能な複雑・高次元環境において, 有望な性能を示すDeep Reinforcement Learning (DRL) の利用について検討する。
MDP (Markov Decision Process) として, 緊急管理問題の事前の定式化を拡張し, DRLフレームワークを用いてシミュレーション環境に存在するハザードを緩和するエージェントを訓練する。
これらの学習ベースエージェントと古典的テクニックの比較は, 性能, 検証困難, 開発プロセスの観点から述べる。
関連論文リスト
- Intelligent Mobile AI-Generated Content Services via Interactive Prompt Engineering and Dynamic Service Provisioning [55.641299901038316]
AI生成コンテンツは、ネットワークエッジで協調的なMobile AIGC Service Providers(MASP)を編成して、リソース制約のあるユーザにユビキタスでカスタマイズされたコンテンツを提供することができる。
このようなパラダイムは2つの大きな課題に直面している: 1) 生のプロンプトは、ユーザーが特定のAIGCモデルで経験していないために、しばしば生成品質が低下する。
本研究では,Large Language Model (LLM) を利用してカスタマイズしたプロンプトコーパスを生成する対話型プロンプトエンジニアリング機構を開発し,政策模倣に逆強化学習(IRL)を用いる。
論文 参考訳(メタデータ) (2025-02-17T03:05:20Z) - Task Offloading in Vehicular Edge Computing using Deep Reinforcement Learning: A Survey [9.21746609806009]
適応的,リアルタイムな意思決定を通じて計算オフロードを最適化するために,強化学習(RL)と深層強化学習(DRL)フレームワークの可能性を検討する。
本稿では,車載ネットワークにおけるDRLの理解と適用を促進することを目的とした,標準化された学習モデル,最適化された報酬構造,協調型マルチエージェントシステムなどの重要な側面に焦点を当てる。
論文 参考訳(メタデータ) (2025-02-10T19:02:20Z) - Task Delay and Energy Consumption Minimization for Low-altitude MEC via Evolutionary Multi-objective Deep Reinforcement Learning [52.64813150003228]
無人航空機や他の航空機による低高度経済(LAE)は、輸送、農業、環境監視といった分野に革命をもたらした。
今後の6世代(6G)時代において、UAV支援移動エッジコンピューティング(MEC)は特に山岳や災害に遭った地域のような困難な環境において重要である。
タスクオフロード問題は、主にタスク遅延の最小化とUAVのエネルギー消費のトレードオフに対処するUAV支援MECの重要な問題の一つである。
論文 参考訳(メタデータ) (2025-01-11T02:32:42Z) - AI-Driven Scenarios for Urban Mobility: Quantifying the Role of ODE Models and Scenario Planning in Reducing Traffic Congestion [0.0]
本稿では,人工知能(AI)駆動技術が交通渋滞動態に与える影響について検討する。
我々は,自動運転車やインテリジェント交通管理といったAIイノベーションが,さまざまな規制枠組みの下での混雑緩和に果たす役割を評価する。
論文 参考訳(メタデータ) (2024-10-25T18:09:02Z) - Aquatic Navigation: A Challenging Benchmark for Deep Reinforcement Learning [53.3760591018817]
ゲームエンジンとDeep Reinforcement Learningの統合の最近の進歩を利用して,水上ナビゲーションのための新しいベンチマーク環境を提案する。
具体的には、最も広く受け入れられているアルゴリズムの一つであるPPOに着目し、先進的なトレーニング手法を提案する。
実験により,これらの成分をうまく組み合わせることで,有望な結果が得られることが示された。
論文 参考訳(メタデータ) (2024-05-30T23:20:23Z) - Variational Autoencoders for exteroceptive perception in reinforcement learning-based collision avoidance [0.0]
Deep Reinforcement Learning (DRL) は有望な制御フレームワークとして登場した。
現在のDRLアルゴリズムは、ほぼ最適ポリシーを見つけるために不均等な計算資源を必要とする。
本稿では,海洋制御システムにおける提案手法の総合的な探索について述べる。
論文 参考訳(メタデータ) (2024-03-31T09:25:28Z) - Investigate-Consolidate-Exploit: A General Strategy for Inter-Task Agent
Self-Evolution [92.84441068115517]
Investigate-Consolidate-Exploit(ICE)は、AIエージェントの適応性と柔軟性を高めるための新しい戦略である。
ICEは、真の自己進化のためのタスク間の知識の伝達を促進する。
XAgentフレームワークに関する我々の実験は、ICEの有効性を示し、API呼び出しを最大80%削減する。
論文 参考訳(メタデータ) (2024-01-25T07:47:49Z) - HAZARD Challenge: Embodied Decision Making in Dynamically Changing
Environments [93.94020724735199]
HAZARDは、火災、洪水、風などの3つの予期せぬ災害シナリオで構成されている。
このベンチマークにより、さまざまなパイプラインで自律エージェントの意思決定能力を評価することができる。
論文 参考訳(メタデータ) (2024-01-23T18:59:43Z) - Towards a Standardized Reinforcement Learning Framework for AAM
Contingency Management [0.0]
我々はMarkov Decision Process(MDP)として並行性管理問題を開発し,それをAAM-Gymシミュレーションフレームワークに統合する。
これにより、強化学習アルゴリズムの迅速なプロトタイピングと既存システムの評価が可能になる。
論文 参考訳(メタデータ) (2023-11-17T13:54:02Z) - Automating the resolution of flight conflicts: Deep reinforcement
learning in service of air traffic controllers [0.0]
難易度と複雑な航空交通シナリオは、今日の航空交通管制官(ATCO)が使用している戦術的衝突検知・分解(CD&R)ツールよりも高いレベルの自動化を必要とする。
本稿では,各エージェント(飛行士)が他のエージェントと共同でCD&Rタスクを行うマルチエージェント環境でグラフ畳み込み強化学習手法を提案する。
本手法は,運用上の透明性問題に対処するため,利害関係者(航空管制官及び航空管制官)に対して高品質なソリューションを提供することができることを示す。
論文 参考訳(メタデータ) (2022-06-15T09:06:58Z) - Cautious Adaptation For Reinforcement Learning in Safety-Critical
Settings [129.80279257258098]
都市運転のような現実の安全クリティカルな目標設定における強化学習(RL)は危険である。
非安全クリティカルな「ソース」環境でエージェントが最初に訓練する「安全クリティカル適応」タスクセットを提案する。
多様な環境における事前経験がリスクを見積もるためにエージェントに装備するという直感に基づくソリューションアプローチであるCARLを提案する。
論文 参考訳(メタデータ) (2020-08-15T01:40:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。