論文の概要: Reinforcement Learning for Credit Index Option Hedging
- arxiv url: http://arxiv.org/abs/2307.09844v1
- Date: Wed, 19 Jul 2023 09:03:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-20 14:47:50.257713
- Title: Reinforcement Learning for Credit Index Option Hedging
- Title(参考訳): 信用指数オプションヘッジのための強化学習
- Authors: Francesco Mandelli, Marco Pinciroli, Michele Trapletti, Edoardo
Vittori
- Abstract要約: 本稿では,強化学習を用いたクレジットインデックスオプションの最適ヘッジ戦略の探索に焦点をあてる。
実践的なアプローチでは、離散時間、トランザクションコスト、実際の市場データに対するポリシーのテストなど、リアリズムに重点を置いています。
- 参考スコア(独自算出の注目度): 2.568904868787359
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we focus on finding the optimal hedging strategy of a credit
index option using reinforcement learning. We take a practical approach, where
the focus is on realism i.e. discrete time, transaction costs; even testing our
policy on real market data. We apply a state of the art algorithm, the Trust
Region Volatility Optimization (TRVO) algorithm and show that the derived
hedging strategy outperforms the practitioner's Black & Scholes delta hedge.
- Abstract(参考訳): 本稿では,強化学習を用いたクレジットインデックスオプションの最適ヘッジ戦略の探索に焦点をあてる。
実践的なアプローチでは、離散時間、トランザクションコスト、実際の市場データに対するポリシーのテストなど、リアリズムに重点を置いています。
技術アルゴリズムであるトラスト領域ボラティリティ最適化(TRVO)アルゴリズムを適用し,得られたヘッジ戦略が,実践者のブラック・アンド・ショールズデルタ・ヘッジよりも優れていることを示す。
関連論文リスト
- Deep Reinforcement Learning for Online Optimal Execution Strategies [49.1574468325115]
本稿では,動的な金融市場における非マルコフ的最適実行戦略の学習に挑戦する。
我々は,Deep Deterministic Policy Gradient(DDPG)に基づく新しいアクター批判アルゴリズムを提案する。
提案アルゴリズムは最適実行戦略の近似に成功していることを示す。
論文 参考訳(メタデータ) (2024-10-17T12:38:08Z) - Robust Utility Optimization via a GAN Approach [3.74142789780782]
本稿では,堅牢なユーティリティ最適化問題を解決するために,GAN(Generative Adversarial Network)アプローチを提案する。
特に、投資家と市場の両方をニューラルネットワーク(NN)でモデル化し、ミニマックスゼロサムゲームでトレーニングする。
論文 参考訳(メタデータ) (2024-03-22T14:36:39Z) - Asset Allocation: From Markowitz to Deep Reinforcement Learning [2.0305676256390934]
資産配分とは、ポートフォリオの資産を常に再分配することでリスクと報酬のバランスをとることを目的とした投資戦略である。
我々は、多くの最適化手法の有効性と信頼性を決定するために、広範囲なベンチマーク研究を行う。
論文 参考訳(メタデータ) (2022-07-14T14:44:04Z) - Off-policy Reinforcement Learning with Optimistic Exploration and
Distribution Correction [73.77593805292194]
我々は、政治以外のアクター批判的枠組みにおいて、批評家のほぼ上位信頼度を最大化するために、別の調査政策を訓練する。
最近導入されたDICEフレームワークを応用して、非政治アクター犯罪訓練のための分布補正比を学習する。
論文 参考訳(メタデータ) (2021-10-22T22:07:51Z) - Provably Correct Optimization and Exploration with Non-linear Policies [65.60853260886516]
ENIACは、批評家の非線形関数近似を可能にするアクター批判手法である。
特定の仮定の下では、学習者は$o(poly(d))$の探索ラウンドで最適に近い方針を見つける。
我々は,この適応を経験的に評価し,線形手法に触発された前処理よりも優れることを示す。
論文 参考訳(メタデータ) (2021-03-22T03:16:33Z) - Provably Efficient Algorithms for Multi-Objective Competitive RL [54.22598924633369]
エージェントの報酬がベクトルとして表現される多目的強化学習(RL)について検討する。
エージェントが相手と競合する設定では、その平均戻りベクトルから目標セットまでの距離によってその性能を測定する。
統計的および計算学的に効率的なアルゴリズムを開発し、関連するターゲットセットにアプローチする。
論文 参考訳(メタデータ) (2021-02-05T14:26:00Z) - Universal Trading for Order Execution with Oracle Policy Distillation [99.57416828489568]
本稿では,不完全な市場状態と注文実行のための最適な行動シーケンスとのギャップを埋める,新たなユニバーサル取引ポリシー最適化フレームワークを提案する。
本研究の枠組みは,完全情報を持つ託宣教師による実践的最適実行に向けて,共通政策の学習を指導する上で有効であることを示す。
論文 参考訳(メタデータ) (2021-01-28T05:52:18Z) - Learning Strategies in Decentralized Matching Markets under Uncertain
Preferences [91.3755431537592]
エージェントの選好が不明な場合,共有資源の不足の設定における意思決定の問題について検討する。
我々のアプローチは、再生されたカーネルヒルベルト空間における好みの表現に基づいている。
エージェントの期待した利益を最大化する最適な戦略を導出する。
論文 参考訳(メタデータ) (2020-10-29T03:08:22Z) - Time your hedge with Deep Reinforcement Learning [0.0]
深層強化学習(DRL)は、市場情報とヘッジ戦略の割り当て決定の間のダイナミックな依存関係を作成することで、この課題に対処することができる。
i)行動決定に追加の文脈情報を使用し、(ii)共通の資産運用者の1日のラグ転倒を考慮し、ヘッジの再均衡を図るための観察と行動の間に1期間の遅れがあり、(iii)アンカードウォークフォワードトレーニングと呼ばれる反復的な試験方法により、安定性とロバスト性の観点から完全にテストされており、(iv)時系列のkフォールドクロスバリデーションと同様に、ヘッジの活用を可能にする。
論文 参考訳(メタデータ) (2020-09-16T06:43:41Z) - Deep Deterministic Portfolio Optimization [0.0]
この研究は、概念的には単純だが数学的には非自明なトレーディング環境上で強化学習アルゴリズムをテストすることである。
本研究では, 決定論的政策勾配アルゴリズムを深く研究し, このような強化学習エージェントが, 最適取引戦略の本質的特徴を回復できることを示す。
論文 参考訳(メタデータ) (2020-03-13T22:20:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。