論文の概要: Mean--Variance Portfolio Selection by Continuous-Time Reinforcement Learning: Algorithms, Regret Analysis, and Empirical Study
- arxiv url: http://arxiv.org/abs/2412.16175v1
- Date: Sun, 08 Dec 2024 15:31:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-29 08:29:26.856592
- Title: Mean--Variance Portfolio Selection by Continuous-Time Reinforcement Learning: Algorithms, Regret Analysis, and Empirical Study
- Title(参考訳): 連続時間強化学習による平均変動ポートフォリオ選択:アルゴリズム,レグレト分析,実証的研究
- Authors: Yilie Huang, Yanwei Jia, Xun Yu Zhou,
- Abstract要約: 本研究では,観測可能な要因により株価が拡散する過程にある市場における平均-変動ポートフォリオの選択について検討する。
本稿では,市場係数の学習や推定を行うことなく,事前委託投資戦略を直接学習する汎用データ駆動型RLアルゴリズムを提案する。
その結果, 連続的RL戦略は, 特に揮発性クマ市場において, 常に最良であることが明らかとなった。
- 参考スコア(独自算出の注目度): 10.404992912881601
- License:
- Abstract: We study continuous-time mean--variance portfolio selection in markets where stock prices are diffusion processes driven by observable factors that are also diffusion processes yet the coefficients of these processes are unknown. Based on the recently developed reinforcement learning (RL) theory for diffusion processes, we present a general data-driven RL algorithm that learns the pre-committed investment strategy directly without attempting to learn or estimate the market coefficients. For multi-stock Black--Scholes markets without factors, we further devise a baseline algorithm and prove its performance guarantee by deriving a sublinear regret bound in terms of Sharpe ratio. For performance enhancement and practical implementation, we modify the baseline algorithm into four variants, and carry out an extensive empirical study to compare their performance, in terms of a host of common metrics, with a large number of widely used portfolio allocation strategies on S\&P 500 constituents. The results demonstrate that the continuous-time RL strategies are consistently among the best especially in a volatile bear market, and decisively outperform the model-based continuous-time counterparts by significant margins.
- Abstract(参考訳): 株価が拡散過程であるにもかかわらず拡散過程である観測可能な要因によって駆動される市場において、株価が拡散過程である市場における平均-分散ポートフォリオの選択について検討する。
近年開発された拡散過程の強化学習(RL)理論に基づき,市場係数の学習や推定を行なわずに直接投資戦略を学習する一般データ駆動型RLアルゴリズムを提案する。
要因のないマルチストックブラックスコールズ市場に対しては、シャープ比でサブ線形後悔境界を導出することにより、さらにベースラインアルゴリズムを考案し、その性能保証を証明する。
性能向上と実践的実装のために,ベースラインアルゴリズムを4つの変種に修正し,S\&P500構成成分に広く使用されているポートフォリオ割り当て戦略を多数含む共通メトリクスのホストの観点から,その性能を比較検討した。
その結果, 連続時間RL戦略は, 不安定なクマ市場では特に最良であり, モデルベース連続時間戦略よりも有意なマージン差で圧倒的に優れていた。
関連論文リスト
- From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
本稿では,エージェントの強化学習プロセスの最適化にステップワイド報酬を利用するStepAgentを紹介する。
エージェント反射とポリシー調整を容易にする暗黙の逆・逆の強化学習手法を提案する。
論文 参考訳(メタデータ) (2024-11-06T10:35:11Z) - VinePPO: Unlocking RL Potential For LLM Reasoning Through Refined Credit Assignment [66.80143024475635]
VinePPOは不偏のモンテカルロ推定を計算するための簡単な手法である。
我々は、VinePPOが、MATHおよびGSM8Kデータセット間でPPOや他のRLフリーベースラインを一貫して上回ることを示す。
論文 参考訳(メタデータ) (2024-10-02T15:49:30Z) - Mean-Variance Portfolio Selection in Long-Term Investments with Unknown Distribution: Online Estimation, Risk Aversion under Ambiguity, and Universality of Algorithms [0.0]
本稿では、データを徐々に、そして継続的に明らかにする視点を採用する。
提案された戦略の性能は特定の市場で保証される。
定常市場及びエルゴード市場では、投資中の過去の市場情報に基づいて、真の条件分布を利用するいわゆるベイズ戦略は、実証的効用、シャープ比、成長率の観点からは、ほぼ確実に、条件分布に依存しない。
論文 参考訳(メタデータ) (2024-06-19T12:11:42Z) - Statistical arbitrage in multi-pair trading strategy based on graph clustering algorithms in US equities market [0.0]
本研究は,グラフクラスタリングアルゴリズムに基づく統計仲裁の新しい枠組みに基づく効果的な戦略の開発を目指す。
この研究は、最適な信号検出とリスク管理のための統合的なアプローチを提供することを目指している。
論文 参考訳(メタデータ) (2024-06-15T17:25:32Z) - Take the Bull by the Horns: Hard Sample-Reweighted Continual Training
Improves LLM Generalization [165.98557106089777]
大きな言語モデル(LLM)の能力を高めることが大きな課題だ。
本研究は,従来の事前学習データセットを用いたLCMの光連続訓練に関する実証的戦略から始まった。
次に、この戦略をインスタンス重み付け分散ロバスト最適化の原則化されたフレームワークに定式化します。
論文 参考訳(メタデータ) (2024-02-22T04:10:57Z) - An Ensemble Method of Deep Reinforcement Learning for Automated
Cryptocurrency Trading [16.78239969166596]
深層強化学習アルゴリズムにより訓練された貿易戦略の一般化性能を向上させるためのアンサンブル手法を提案する。
提案手法は, 深層強化学習戦略とパッシブ投資戦略のベンチマークと比較し, サンプル外性能を向上する。
論文 参考訳(メタデータ) (2023-07-27T04:00:09Z) - Factor Investing with a Deep Multi-Factor Model [123.52358449455231]
我々は、業界中立化と市場中立化モジュールを明確な財務見識をもって取り入れた、新しい深層多要素モデルを開発する。
実世界の株式市場データによるテストは、我々の深層多要素モデルの有効性を示している。
論文 参考訳(メタデータ) (2022-10-22T14:47:11Z) - Deep Reinforcement Learning and Convex Mean-Variance Optimisation for
Portfolio Management [0.0]
強化学習(RL)法は明示的な予測に頼らず、多段階決定プロセスに適している。
総合的な傾向の異なる経済の3つの市場で実験が行われた。
論文 参考訳(メタデータ) (2022-02-13T10:12:09Z) - Deep Q-Learning Market Makers in a Multi-Agent Simulated Stock Market [58.720142291102135]
本稿では,エージェント・ベースの観点から,これらのマーケット・メーカーの戦略に関する研究に焦点をあてる。
模擬株式市場における知的市場マーカー作成のための強化学習(Reinforcement Learning, RL)の適用を提案する。
論文 参考訳(メタデータ) (2021-12-08T14:55:21Z) - ARISE: ApeRIodic SEmi-parametric Process for Efficient Markets without
Periodogram and Gaussianity Assumptions [91.3755431537592]
我々は、効率的な市場を調査するためのApeRI-miodic(ARISE)プロセスを提案する。
ARISEプロセスは、いくつかの既知のプロセスの無限サムとして定式化され、周期スペクトル推定を用いる。
実際に,実世界の市場の効率性を明らかにするために,ARISE関数を適用した。
論文 参考訳(メタデータ) (2021-11-08T03:36:06Z) - Deep Learning Statistical Arbitrage [0.0]
本稿では,統計的仲裁のための統一的な概念枠組みを提案し,新しいディープラーニングソリューションを開発した。
我々は、条件付き遅延資産価格要素から残余ポートフォリオとして類似資産の仲裁ポートフォリオを構築する。
我々は、これらの残余ポートフォリオの時系列信号を、最も強力な機械学習時系列ソリューションの1つを用いて抽出する。
論文 参考訳(メタデータ) (2021-06-08T00:48:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。