論文の概要: Impact of Disentanglement on Pruning Neural Networks
- arxiv url: http://arxiv.org/abs/2307.09994v1
- Date: Wed, 19 Jul 2023 13:58:01 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-20 13:46:33.295011
- Title: Impact of Disentanglement on Pruning Neural Networks
- Title(参考訳): 刈り取りニューラルネットワークにおける絡み合いの影響
- Authors: Carl Shneider, Peyman Rostami, Anis Kacem, Nilotpal Sinha, Abd El
Rahman Shabayek, Djamila Aouada
- Abstract要約: 変分オートエンコーダ(VAE)ネットワークが生成する乱数表現は,モデル圧縮を実現する上で有望な手法である。
本研究では,Beta-VAEフレームワークと標準的なプルーニング基準を組み合わせることで,ネットワークが絡み合った表現を学習することを強制する影響を調査する。
- 参考スコア(独自算出の注目度): 16.077795265753917
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deploying deep learning neural networks on edge devices, to accomplish task
specific objectives in the real-world, requires a reduction in their memory
footprint, power consumption, and latency. This can be realized via efficient
model compression. Disentangled latent representations produced by variational
autoencoder (VAE) networks are a promising approach for achieving model
compression because they mainly retain task-specific information, discarding
useless information for the task at hand. We make use of the Beta-VAE framework
combined with a standard criterion for pruning to investigate the impact of
forcing the network to learn disentangled representations on the pruning
process for the task of classification. In particular, we perform experiments
on MNIST and CIFAR10 datasets, examine disentanglement challenges, and propose
a path forward for future works.
- Abstract(参考訳): エッジデバイスにディープラーニングニューラルネットワークをデプロイし、実際の世界でタスク固有の目的を達成するためには、メモリフットプリント、消費電力、レイテンシを削減する必要がある。
これは効率的なモデル圧縮によって実現できる。
可変オートエンコーダ(VAE)ネットワークが生成する非有角遅延表現は、主にタスク固有の情報を保持し、手元にあるタスクに対して無駄な情報を破棄するため、モデル圧縮を実現するための有望なアプローチである。
我々は,β-vaeフレームワークとプルーニングの標準基準を組み合わせることで,分類作業のプルーニングプロセスにおいてネットワークが不連続表現を学習させる影響について検討する。
特に,mnist と cifar10 のデータセットについて実験を行い,絡み合いの課題を調べ,今後の課題への道を提案する。
関連論文リスト
- Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective [64.04617968947697]
より優れた重量空間を実現するために、新しいデータモデル共設計視点を導入する。
具体的には、提案したVPNフレームワークでニューラルネットワークのスパーシフィケーションをアップグレードするために、カスタマイズされたVisual Promptが実装されている。
論文 参考訳(メタデータ) (2023-12-03T13:50:24Z) - Negotiated Representations to Prevent Forgetting in Machine Learning
Applications [0.0]
破滅的な忘れは、機械学習の分野で重要な課題である。
本稿では,機械学習アプリケーションにおける破滅的忘れを防止する新しい方法を提案する。
論文 参考訳(メタデータ) (2023-11-30T22:43:50Z) - SynA-ResNet: Spike-driven ResNet Achieved through OR Residual Connection [10.702093960098104]
スパイキングニューラルネットワーク(SNN)は、その生物学的忠実さとエネルギー効率のよいスパイク駆動操作を実行する能力のために、脳のような計算にかなりの注意を払っている。
ORRC(Residual Connection)を通じて大量の冗長情報を蓄積する新しいトレーニングパラダイムを提案する。
次に,SynA(SynA)モジュールを用いて冗長情報をフィルタリングし,背骨における特徴抽出を促進するとともに,ショートカットにおけるノイズや無駄な特徴の影響を抑える。
論文 参考訳(メタデータ) (2023-11-11T13:36:27Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
画像超解像(SR)は、CNNからトランスフォーマーアーキテクチャへの広範なニューラルネットワーク設計を目撃している。
本研究は,市販のネットワーク設計を生かし,基礎となる計算オーバーヘッドを低減するため,超高解像度イテレーションにおけるネットワークプルーニングの可能性について検討する。
本研究では, ランダムネットワークのスパース構造を最適化し, 重要でない重みを小さめに微調整することにより, 反復型軟収縮率(ISS-P)法を提案する。
論文 参考訳(メタデータ) (2023-03-16T21:06:13Z) - Toward Certified Robustness Against Real-World Distribution Shifts [65.66374339500025]
我々は、データから摂動を学ぶために生成モデルを訓練し、学習したモデルの出力に関して仕様を定義する。
この設定から生じるユニークな挑戦は、既存の検証者がシグモイドの活性化を厳密に近似できないことである。
本稿では,古典的な反例誘導的抽象的洗練の概念を活用するシグモイドアクティベーションを扱うための一般的なメタアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-06-08T04:09:13Z) - Self-Compression in Bayesian Neural Networks [0.9176056742068814]
ベイジアンフレームワークによるネットワーク圧縮に関する新たな知見を提案する。
ベイズニューラルネットワークがモデルパラメータの冗長性を自動的に検出し,自己圧縮を可能にすることを示す。
実験の結果,ネットワーク自体が特定したパラメータを削除することで,ネットワークアーキテクチャの圧縮に成功できることが示唆された。
論文 参考訳(メタデータ) (2021-11-10T21:19:40Z) - Latent Network Embedding via Adversarial Auto-encoders [15.656374849760734]
本稿では,逆グラフ自動エンコーダに基づく潜在ネットワーク埋め込みモデルを提案する。
この枠組みの下では、潜伏構造を発見する問題は、部分的な観測から潜伏関係を推測するものとして定式化されている。
論文 参考訳(メタデータ) (2021-09-30T16:49:46Z) - Semi-supervised Network Embedding with Differentiable Deep Quantisation [81.49184987430333]
我々はネットワーク埋め込みのための微分可能な量子化法であるd-SNEQを開発した。
d-SNEQは、学習された量子化符号にリッチな高次情報を与えるためにランク損失を組み込む。
トレーニング済みの埋め込みのサイズを大幅に圧縮できるため、ストレージのフットプリントが減少し、検索速度が向上する。
論文 参考訳(メタデータ) (2021-08-20T11:53:05Z) - Mixed-Privacy Forgetting in Deep Networks [114.3840147070712]
大規模画像分類タスクにおいてトレーニングされたネットワークの重みからトレーニングサンプルのサブセットの影響を除去できることを示す。
そこで本研究では,混合プライバシー設定における「忘れ」という新しい概念を導入する。
提案手法は,モデル精度のトレードオフを伴わずに忘れることができることを示す。
論文 参考訳(メタデータ) (2020-12-24T19:34:56Z) - Attentional Local Contrast Networks for Infrared Small Target Detection [15.882749652217653]
赤外線小目標検出のための新しいモデル駆動深層ネットワークを提案する。
従来の局所コントラスト測定法を、エンドツーエンドネットワークにおける深さ自在なパラメータレス非線形特徴精製層としてモジュール化します。
ネットワークアーキテクチャの各コンポーネントの有効性と効率を実証的に検証するために,ネットワーク奥行きの異なる詳細なアブレーション研究を行う。
論文 参考訳(メタデータ) (2020-12-15T19:33:09Z) - Resolution Adaptive Networks for Efficient Inference [53.04907454606711]
本稿では,低分解能表現が「容易」な入力を分類するのに十分である,という直感に触発された新しいレゾリューション適応ネットワーク(RANet)を提案する。
RANetでは、入力画像はまず、低解像度表現を効率的に抽出する軽量サブネットワークにルーティングされる。
ネットワーク内の高解像度パスは、"ハード"サンプルを認識する能力を維持している。
論文 参考訳(メタデータ) (2020-03-16T16:54:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。