論文の概要: RL-ViGen: A Reinforcement Learning Benchmark for Visual Generalization
- arxiv url: http://arxiv.org/abs/2307.10224v1
- Date: Sat, 15 Jul 2023 05:45:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-23 11:18:21.403339
- Title: RL-ViGen: A Reinforcement Learning Benchmark for Visual Generalization
- Title(参考訳): RL-ViGen:視覚一般化のための強化学習ベンチマーク
- Authors: Zhecheng Yuan, Sizhe Yang, Pu Hua, Can Chang, Kaizhe Hu, Xiaolong
Wang, Huazhe Xu
- Abstract要約: 視覚一般化のための強化学習ベンチマークRL-ViGenを紹介する。
RL-ViGenは多種多様なタスクと幅広い一般化型を含み、より信頼性の高い結論の導出を容易にする。
我々の願望は、RL-ViGenが将来の普遍的な視覚一般化RLエージェントの創出の触媒となることである。
- 参考スコア(独自算出の注目度): 13.297246928862787
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Visual Reinforcement Learning (Visual RL), coupled with high-dimensional
observations, has consistently confronted the long-standing challenge of
generalization. Despite the focus on algorithms aimed at resolving visual
generalization problems, we argue that the devil is in the existing benchmarks
as they are restricted to isolated tasks and generalization categories,
undermining a comprehensive evaluation of agents' visual generalization
capabilities. To bridge this gap, we introduce RL-ViGen: a novel Reinforcement
Learning Benchmark for Visual Generalization, which contains diverse tasks and
a wide spectrum of generalization types, thereby facilitating the derivation of
more reliable conclusions. Furthermore, RL-ViGen incorporates the latest
generalization visual RL algorithms into a unified framework, under which the
experiment results indicate that no single existing algorithm has prevailed
universally across tasks. Our aspiration is that RL-ViGen will serve as a
catalyst in this area, and lay a foundation for the future creation of
universal visual generalization RL agents suitable for real-world scenarios.
Access to our code and implemented algorithms is provided at
https://gemcollector.github.io/RL-ViGen/.
- Abstract(参考訳): 視覚強化学習(Visual Reinforcement Learning, Visual RL)は、高次元の観察と相まって、長年にわたる一般化の課題に直面してきた。
視覚的一般化問題の解決を目的としたアルゴリズムに重点を置いているにもかかわらず、デビルは孤立したタスクや一般化カテゴリに限定されており、エージェントの視覚的一般化能力の包括的な評価を損なうため、既存のベンチマークにあると論じる。
視覚一般化のための強化学習ベンチマーク(Reinforcement Learning Benchmark for Visual Generalization, RL-ViGen)は,多様なタスクと多種多様な一般化型を含み,より信頼性の高い結論の導出を容易にする。
さらに、RL-ViGenは最新の一般化ビジュアルRLアルゴリズムを統一されたフレームワークに組み込んでいる。
我々の願望は、RL-ViGenがこの領域で触媒として機能し、現実のシナリオに適した普遍的な視覚一般化RLエージェントの創出の基礎となることである。
コードへのアクセスと実装されたアルゴリズムはhttps://gemcollector.github.io/RL-ViGen/で提供されます。
関連論文リスト
- SigmaRL: A Sample-Efficient and Generalizable Multi-Agent Reinforcement Learning Framework for Motion Planning [0.6668116630521236]
本稿では,マルチエージェント強化学習(RL)のサンプル効率と一般化の両立を目的とした,SigmaRLというオープンソースの分散フレームワークを紹介する。
本稿では,ほとんどの交通シナリオに適用可能な一般的な特徴に着目し,情報深度観測を設計するための5つの戦略を提案する。
交差点上でこれらの戦略を用いてRLエージェントを訓練し、新しい交差点、オンランプ、ラウンドアバウトを含む、全く見えない交通シナリオの数値実験を通してそれらの一般化を評価する。
論文 参考訳(メタデータ) (2024-08-14T16:16:51Z) - Generative AI for Deep Reinforcement Learning: Framework, Analysis, and Use Cases [60.30995339585003]
深部強化学習(DRL)は様々な分野に広く適用されており、優れた成果を上げている。
DRLは、サンプル効率の低下や一般化の低さなど、いくつかの制限に直面している。
本稿では、これらの問題に対処し、DRLアルゴリズムの性能を向上させるために、生成AI(GAI)を活用する方法について述べる。
論文 参考訳(メタデータ) (2024-05-31T01:25:40Z) - Closing the Gap between TD Learning and Supervised Learning -- A
Generalisation Point of View [51.30152184507165]
いくつかの強化学習(RL)アルゴリズムは、トレーニング中に見たことのないタスクを解決するために、経験の断片を縫い合わせることができる。
このoft-sought特性は、動的プログラミングに基づくRL法と教師あり学習(SL)に基づくRL法とを区別する数少ない方法の1つである。
これらの方法がこの重要な縫合特性を許すかどうかは不明である。
論文 参考訳(メタデータ) (2024-01-20T14:23:25Z) - A Survey of Meta-Reinforcement Learning [69.76165430793571]
我々は,メタRLと呼ばれるプロセスにおいて,機械学習問題自体として,より優れたRLアルゴリズムを開発した。
本稿では,タスク分布の存在と各タスクに利用可能な学習予算に基づいて,高レベルでメタRL研究をクラスタ化する方法について議論する。
RL実践者のための標準ツールボックスにメタRLを組み込むことの道程について,オープンな問題を提示することによって,結論を下す。
論文 参考訳(メタデータ) (2023-01-19T12:01:41Z) - Generalization Through the Lens of Learning Dynamics [11.009483845261958]
機械学習(ML)システムは、デプロイ時に正確な予測を得るために、新しい状況に一般化することを学ぶ必要がある。
ディープニューラルネットワークの印象的な一般化性能は、理論家たちに悪影響を与えている。
この論文は、教師付き学習タスクと強化学習タスクの両方において、ディープニューラルネットワークの学習ダイナミクスを研究する。
論文 参考訳(メタデータ) (2022-12-11T00:07:24Z) - A Comprehensive Survey of Data Augmentation in Visual Reinforcement Learning [53.35317176453194]
データ拡張(DA)は、サンプル効率と一般化可能なポリシーを取得するために視覚的RLで広く使われている技術である。
本稿では、視覚的RLで使用されている既存の拡張技法の原則的な分類法を提案し、拡張データをどのように活用するかを詳細に議論する。
視覚的RLにおけるDAに関する最初の総合的な調査として、この研究は、この新興分野に貴重なガイダンスを提供するものと期待されている。
論文 参考訳(メタデータ) (2022-10-10T11:01:57Z) - Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels [112.63440666617494]
強化学習アルゴリズムは成功するが、エージェントと環境の間の大量の相互作用を必要とする。
本稿では,教師なしモデルベースRLを用いてエージェントを事前学習する手法を提案する。
我々はReal-Word RLベンチマークにおいて、適応中の環境摂動に対する抵抗性を示唆し、堅牢な性能を示す。
論文 参考訳(メタデータ) (2022-09-24T14:22:29Z) - Light-weight probing of unsupervised representations for Reinforcement Learning [20.638410483549706]
線形探索が教師なしRL表現の品質評価の代行的タスクであるかどうかを検討する。
本稿では,Atari100kベンチマークにおける下流RL性能と,探索タスクが強く相関していることを示す。
これにより、事前学習アルゴリズムの空間を探索し、有望な事前学習レシピを特定するためのより効率的な方法が提供される。
論文 参考訳(メタデータ) (2022-08-25T21:08:01Z) - Contextualize Me -- The Case for Context in Reinforcement Learning [49.794253971446416]
文脈強化学習(cRL)は、このような変化を原則的にモデル化するためのフレームワークを提供する。
我々は,cRLが有意義なベンチマークや一般化タスクに関する構造化推論を通じて,RLのゼロショット一般化の改善にどのように貢献するかを示す。
論文 参考訳(メタデータ) (2022-02-09T15:01:59Z) - Improving Zero-shot Generalization in Offline Reinforcement Learning
using Generalized Similarity Functions [34.843526573355746]
強化学習(Reinforcement Learning, RL)エージェントは、複雑な逐次意思決定タスクの解決に広く用いられているが、訓練中に見えないシナリオに一般化することが困難である。
RLにおける一般化のためのオンラインアルゴリズムの性能は、観測間の類似性の評価が不十分なため、オフライン環境では妨げられることを示す。
本稿では, 一般化類似度関数(GSF)と呼ばれる新しい理論的動機付けフレームワークを提案する。このフレームワークは, 競合学習を用いてオフラインのRLエージェントを訓練し, 期待される将来の行動の類似性に基づいて観測を集約する。
論文 参考訳(メタデータ) (2021-11-29T15:42:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。