Adaptive Trotterization for time-dependent Hamiltonian quantum dynamics using piecewise conservation laws
- URL: http://arxiv.org/abs/2307.10327v2
- Date: Thu, 20 Jun 2024 06:22:34 GMT
- Title: Adaptive Trotterization for time-dependent Hamiltonian quantum dynamics using piecewise conservation laws
- Authors: Hongzheng Zhao, Marin Bukov, Markus Heyl, Roderich Moessner,
- Abstract summary: Digital quantum simulation relies on Trotterization to discretize time evolution into elementary quantum gates.
We present an adaptive Trotterization algorithm to cope with time-dependent Hamiltonians.
We validate the algorithm for a time-dependent quantum spin chain, demonstrating that it can outperform the conventional Trotter algorithm with a fixed step size at a controlled error.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Digital quantum simulation relies on Trotterization to discretize time evolution into elementary quantum gates. On current quantum processors with notable gate imperfections, there is a critical tradeoff between improved accuracy for finer timesteps, and increased error rate on account of the larger circuit depth. We present an adaptive Trotterization algorithm to cope with time-dependent Hamiltonians, where we propose a concept of piecewise "conserved" quantities to estimate errors in the time evolution between two (nearby) points in time; these allow us to bound the errors accumulated over the full simulation period. They reduce to standard conservation laws in the case of time-independent Hamiltonians, for which we first developed an adaptive Trotterization scheme [PRX Quantum 4, 030319]. We validate the algorithm for a time-dependent quantum spin chain, demonstrating that it can outperform the conventional Trotter algorithm with a fixed step size at a controlled error.
Related papers
- Learning effective Hamiltonians for adaptive time-evolution quantum algorithms [0.08796261172196743]
Digital quantum simulation of many-body dynamics relies on Trotterization to decompose the target time evolution into elementary quantum gates.
Recent advances have outlined protocols enabling more efficient adaptive Trotter protocols.
We propose to use quantum Hamiltonian learning to numerically obtain the effective Hamiltonian and apply it on the recently introduced ADA-Trotter algorithm.
arXiv Detail & Related papers (2024-06-10T11:50:38Z) - Trotter Errors and the Emergence of Chaos in Quantum Simulation [0.0]
We run quantum simulations on a small, highly accurate quantum processor.
We show how one can optimize simulation accuracy by balancing algorithmic (Trotter) errors against native errors specific to the quantum hardware at hand.
arXiv Detail & Related papers (2022-12-07T18:39:33Z) - Making Trotterization adaptive and energy-self-correcting for NISQ
devices and beyond [0.0]
Simulation of continuous time evolution requires time discretization on both classical and quantum computers.
We introduce a quantum algorithm to solve this problem, providing a controlled solution of the quantum many-body dynamics of local observables.
Our algorithm can be potentially useful on a more general level whenever time discretization is involved concerning, for instance, also numerical approaches based on time-evolving block decimation methods.
arXiv Detail & Related papers (2022-09-26T12:54:32Z) - Multistate Transition Dynamics by Strong Time-Dependent Perturbation in
NISQ era [0.0]
We develop a quantum computing scheme utilizing McLachlan variational principle in a hybrid quantum-classical algorithm.
Results for transition probabilities are obtained with accuracy better than 1%, as established by comparison to the benchmark data.
arXiv Detail & Related papers (2021-12-13T00:49:15Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Algebraic Compression of Quantum Circuits for Hamiltonian Evolution [52.77024349608834]
Unitary evolution under a time dependent Hamiltonian is a key component of simulation on quantum hardware.
We present an algorithm that compresses the Trotter steps into a single block of quantum gates.
This results in a fixed depth time evolution for certain classes of Hamiltonians.
arXiv Detail & Related papers (2021-08-06T19:38:01Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Bridging the Gap Between the Transient and the Steady State of a
Nonequilibrium Quantum System [58.720142291102135]
Many-body quantum systems in nonequilibrium remain one of the frontiers of many-body physics.
Recent work on strongly correlated electrons in DC electric fields illustrated that the system may evolve through successive quasi-thermal states.
We demonstrate an extrapolation scheme that uses the short-time transient calculation to obtain the retarded quantities.
arXiv Detail & Related papers (2021-01-04T06:23:01Z) - Fast and differentiable simulation of driven quantum systems [58.720142291102135]
We introduce a semi-analytic method based on the Dyson expansion that allows us to time-evolve driven quantum systems much faster than standard numerical methods.
We show results of the optimization of a two-qubit gate using transmon qubits in the circuit QED architecture.
arXiv Detail & Related papers (2020-12-16T21:43:38Z) - Term Grouping and Travelling Salesperson for Digital Quantum Simulation [6.945601123742983]
Digital simulation of quantum dynamics by evaluating the time evolution of a Hamiltonian is the initially proposed application of quantum computing.
The large number of quantum gates required for emulating the complete second quantization form of the Hamiltonian makes such an approach unsuitable for near-term devices.
We propose a new term ordering strategy, max-commute-tsp, that simultaneously mitigates both algorithmic and physical errors.
arXiv Detail & Related papers (2020-01-16T18:33:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.