論文の概要: ProtiGeno: a prokaryotic short gene finder using protein language models
- arxiv url: http://arxiv.org/abs/2307.10343v1
- Date: Wed, 19 Jul 2023 16:46:42 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-21 16:09:16.154010
- Title: ProtiGeno: a prokaryotic short gene finder using protein language models
- Title(参考訳): ProtiGeno : タンパク質言語モデルを用いたプロカリアティックショート遺伝子ファインダー
- Authors: Tony Tu, Gautham Krishna, Amirali Aghazadeh
- Abstract要約: 現在の遺伝子発見者は長い遺伝子を見つけることに非常に敏感であるが、その感度は短い遺伝子を見つける際に顕著に低下する。
我々はProtiGenoと呼ばれる深層学習に基づく手法を開発し、特に短いプロカリアティック遺伝子を標的とした。
4,288個のプロカリーゼゲノムの系統的大規模実験において、ProtiGenoは、現在の最先端遺伝子ファインダーよりも高精度で短いコードと非コード遺伝子を予測できることを実証した。
- 参考スコア(独自算出の注目度): 1.2354076490479513
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Prokaryotic gene prediction plays an important role in understanding the
biology of organisms and their function with applications in medicine and
biotechnology. Although the current gene finders are highly sensitive in
finding long genes, their sensitivity decreases noticeably in finding shorter
genes (<180 nts). The culprit is insufficient annotated gene data to identify
distinguishing features in short open reading frames (ORFs). We develop a deep
learning-based method called ProtiGeno, specifically targeting short
prokaryotic genes using a protein language model trained on millions of evolved
proteins. In systematic large-scale experiments on 4,288 prokaryotic genomes,
we demonstrate that ProtiGeno predicts short coding and noncoding genes with
higher accuracy and recall than the current state-of-the-art gene finders. We
discuss the predictive features of ProtiGeno and possible limitations by
visualizing the three-dimensional structure of the predicted short genes. Data,
codes, and models are available at https://github.com/tonytu16/protigeno.
- Abstract(参考訳): プロカリオティック遺伝子予測は、生物の生物学とその機能を理解する上で重要な役割を担っている。
現在の遺伝子発見者は長い遺伝子の発見に非常に敏感であるが、その感度は短い遺伝子の発見において顕著に低下する(180 nts)。
犯人は、短いオープンリーディングフレーム(ORF)の識別特徴を特定するために、アノテーション付き遺伝子データが不十分である。
我々はProtiGenoと呼ばれる深層学習に基づく手法を開発し、何百万もの進化したタンパク質で訓練されたタンパク質言語モデルを用いて、短いプロカリアティック遺伝子を特にターゲットとした。
4,288個のプロカリーゼゲノムの系統的大規模実験において、ProtiGenoは、現在の最先端遺伝子ファインダーよりも高精度で短いコーディングおよび非コーディング遺伝子を予測する。
予測された短い遺伝子の3次元構造を可視化することにより,プロティゲノの予測的特徴と限界について考察する。
データ、コード、モデルはhttps://github.com/tonytu16/protigenoで入手できる。
関連論文リスト
- Learning to Discover Regulatory Elements for Gene Expression Prediction [59.470991831978516]
Seq2Expは、ターゲット遺伝子発現を駆動する制御要素を発見し、抽出するために設計されたSequence to Expressionネットワークである。
本手法は, エピジェノミックシグナル, DNA 配列とその関連因子の因果関係を捉える。
論文 参考訳(メタデータ) (2025-02-19T03:25:49Z) - GENERator: A Long-Context Generative Genomic Foundation Model [66.46537421135996]
本研究では,98k塩基対 (bp) と1.2Bパラメータからなるゲノム基盤モデルを提案する。
このモデルは分子生物学の中心的なドグマに固執し、タンパク質のコード配列を正確に生成する。
また、特にプロモーター配列の即応的な生成を通じて、シーケンス最適化において大きな可能性を示している。
論文 参考訳(メタデータ) (2025-02-11T05:39:49Z) - Survey and Improvement Strategies for Gene Prioritization with Large Language Models [61.24568051916653]
大規模言語モデル (LLM) は, 医学検査において良好に機能しているが, 希少な遺伝疾患の診断における有効性は評価されていない。
表現型と可溶性レベルに基づいて, マルチエージェントとヒトフェノタイプオントロジー(HPO)を分類した。
ベースラインでは、GPT-4は他のLLMよりも優れており、因果遺伝子を正しくランク付けする際の精度は30%近く向上した。
論文 参考訳(メタデータ) (2025-01-30T23:03:03Z) - GeneQuery: A General QA-based Framework for Spatial Gene Expression Predictions from Histology Images [41.732831871866516]
全スライディングヘマトキシリンとエオシン染色組織像は容易にアクセスでき、顕微鏡レベルで組織構造と組成を詳細に調べることができる。
近年の進歩は、これらの組織像を利用して、空間的に解決された遺伝子発現プロファイルを予測している。
GeneQueryは、この遺伝子発現予測タスクを質問応答(QA)方式で解決し、より汎用性と柔軟性を向上させることを目的としている。
論文 参考訳(メタデータ) (2024-11-27T14:33:13Z) - An Evolutional Neural Network Framework for Classification of Microarray Data [0.0]
本研究の目的は,遺伝的アルゴリズムとニューラルネットワークのハイブリッドモデルを用いて,情報的遺伝子のサブセット選択において問題を克服することである。
実験の結果,提案手法は,他の機械学習アルゴリズムと比較して,高い精度と最小数の選択遺伝子が示唆された。
論文 参考訳(メタデータ) (2024-11-20T13:48:40Z) - VQDNA: Unleashing the Power of Vector Quantization for Multi-Species Genomic Sequence Modeling [60.91599380893732]
VQDNAは、ゲノムボキャブラリ学習の観点からゲノムのトークン化を改良する汎用フレームワークである。
ベクトル量子化されたコードブックを学習可能な語彙として活用することにより、VQDNAはゲノムをパターン認識の埋め込みに適応的にトークン化することができる。
論文 参考訳(メタデータ) (2024-05-13T20:15:03Z) - Whole Genome Transformer for Gene Interaction Effects in Microbiome Habitat Specificity [3.972930262155919]
本研究では、遺伝子ベクター化のための既存の大規模モデルを利用して、微生物ゲノム配列全体から生息地特異性を予測する枠組みを提案する。
我々は、異なる生息地から得られた高品質のマイクロバイオームゲノムの大規模なデータセット上で、我々のアプローチを訓練し、検証する。
論文 参考訳(メタデータ) (2024-05-09T09:34:51Z) - HyenaDNA: Long-Range Genomic Sequence Modeling at Single Nucleotide
Resolution [76.97231739317259]
本稿では,ヒト参照ゲノム上に,最大100万個のトークンを単一ヌクレオチドレベルで有するゲノム基盤モデルであるHyenaDNAについて紹介する。
Nucleotide Transformerの微調整されたベンチマークでは、HyenaDNAが18のデータセットのうち12の最先端(SotA)に到達した。
論文 参考訳(メタデータ) (2023-06-27T20:46:34Z) - Machine Learning Methods for Cancer Classification Using Gene Expression
Data: A Review [77.34726150561087]
がんは心臓血管疾患の2番目の死因である。
遺伝子発現は癌の早期発見において基本的な役割を担っている。
本研究は,機械学習を用いた癌分類における遺伝子発現解析の最近の進歩を概説する。
論文 参考訳(メタデータ) (2023-01-28T15:03:03Z) - SemanticCAP: Chromatin Accessibility Prediction Enhanced by Features
Learning from a Language Model [3.0643865202019698]
本稿では、ゲノムのアクセス可能な領域を特定するためのSemanticCAPという新しいソリューションを提案する。
遺伝子配列のコンテキストをモデル化する遺伝子モデルを導入し、遺伝子配列の効果的な表現を提供する。
公開ベンチマークによる他のシステムと比較すると,我々のモデルは性能が向上することが判明した。
論文 参考訳(メタデータ) (2022-04-05T11:47:58Z) - SimpleChrome: Encoding of Combinatorial Effects for Predicting Gene
Expression [8.326669256957352]
遺伝子のヒストン修飾表現を学習するディープラーニングモデルであるSimpleChromeを紹介します。
このモデルから得られた特徴により、遺伝子間相互作用の潜在効果と標的遺伝子の発現に対する直接遺伝子調節をよりよく理解することができます。
論文 参考訳(メタデータ) (2020-12-15T23:30:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。