論文の概要: Whole Genome Transformer for Gene Interaction Effects in Microbiome Habitat Specificity
- arxiv url: http://arxiv.org/abs/2405.05998v2
- Date: Tue, 28 May 2024 10:59:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 00:29:50.733732
- Title: Whole Genome Transformer for Gene Interaction Effects in Microbiome Habitat Specificity
- Title(参考訳): マイクロバイオームのハビタット特異性における遺伝子相互作用効果のための全ゲノムトランス
- Authors: Zhufeng Li, Sandeep S Cranganore, Nicholas Youngblut, Niki Kilbertus,
- Abstract要約: 本研究では、遺伝子ベクター化のための既存の大規模モデルを利用して、微生物ゲノム配列全体から生息地特異性を予測する枠組みを提案する。
我々は、異なる生息地から得られた高品質のマイクロバイオームゲノムの大規模なデータセット上で、我々のアプローチを訓練し、検証する。
- 参考スコア(独自算出の注目度): 3.972930262155919
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Leveraging the vast genetic diversity within microbiomes offers unparalleled insights into complex phenotypes, yet the task of accurately predicting and understanding such traits from genomic data remains challenging. We propose a framework taking advantage of existing large models for gene vectorization to predict habitat specificity from entire microbial genome sequences. Based on our model, we develop attribution techniques to elucidate gene interaction effects that drive microbial adaptation to diverse environments. We train and validate our approach on a large dataset of high quality microbiome genomes from different habitats. We not only demonstrate solid predictive performance, but also how sequence-level information of entire genomes allows us to identify gene associations underlying complex phenotypes. Our attribution recovers known important interaction networks and proposes new candidates for experimental follow up.
- Abstract(参考訳): マイクロバイオーム内の膨大な遺伝的多様性を活用することで、複雑な表現型に関する非並列的な洞察が得られるが、そのような特徴をゲノムデータから正確に予測し理解する作業は依然として困難である。
本研究では、遺伝子ベクター化のための既存の大規模モデルを利用して、微生物ゲノム配列全体から生息地特異性を予測する枠組みを提案する。
本モデルに基づいて,微生物を多様な環境に適応させる遺伝子相互作用効果を解明するための属性技術を開発した。
我々は、異なる生息地から得られた高品質のマイクロバイオームゲノムの大規模なデータセット上で、我々のアプローチを訓練し、検証する。
我々は、確固とした予測性能を示すだけでなく、ゲノム全体の配列レベルの情報によって、複雑な表現型に基づく遺伝子関連を識別する方法についても示している。
我々の属性は、既知の重要な相互作用ネットワークを復元し、実験的なフォローアップのための新しい候補を提案する。
関連論文リスト
- Weighted Diversified Sampling for Efficient Data-Driven Single-Cell Gene-Gene Interaction Discovery [56.622854875204645]
本稿では,遺伝子・遺伝子相互作用の探索に先進的なトランスフォーマーモデルを活用する,データ駆動型計算ツールを活用した革新的なアプローチを提案する。
新たな重み付き多様化サンプリングアルゴリズムは、データセットのたった2パスで、各データサンプルの多様性スコアを算出する。
論文 参考訳(メタデータ) (2024-10-21T03:35:23Z) - Predicting Genetic Mutation from Whole Slide Images via Biomedical-Linguistic Knowledge Enhanced Multi-label Classification [119.13058298388101]
遺伝子変異予測性能を向上させるため,生物知識を付加したPathGenomic Multi-label Transformerを開発した。
BPGTはまず、2つの慎重に設計されたモジュールによって遺伝子前駆体を構成する新しい遺伝子エンコーダを確立する。
BPGTはその後ラベルデコーダを設計し、最終的に2つの調整されたモジュールによる遺伝的突然変異予測を行う。
論文 参考訳(メタデータ) (2024-06-05T06:42:27Z) - Learning to Predict Mutation Effects of Protein-Protein Interactions by Microenvironment-aware Hierarchical Prompt Learning [78.38442423223832]
我々は、新しいコードブック事前学習タスク、すなわちマスク付きマイクロ環境モデリングを開発する。
突然変異効果予測において、最先端の事前学習法よりも優れた性能と訓練効率を示す。
論文 参考訳(メタデータ) (2024-05-16T03:53:21Z) - FGBERT: Function-Driven Pre-trained Gene Language Model for Metagenomics [35.47381119898764]
タンパク質をベースとした遺伝子表現をコンテキスト認識および構造関連トークン化剤として導入する。
MGMとTEM-CLは1億のメダゲノミクス配列を事前訓練した新しいメダゲノミクス言語モデルであるNAMEを構成する。
論文 参考訳(メタデータ) (2024-02-24T13:13:17Z) - evolSOM: an R Package for evolutionary conservation analysis with SOMs [0.4972323953932129]
本稿では,生物変数の保存を探索・可視化するために,自己組織化マップ(SOM)を利用した新しいRパッケージであるevolSOMを紹介する。
パッケージは自動的に変位を計算し、図形的に表示し、保存された変数と変位した変数を効率よく比較および明らかにする。
EvolSOMを用いて遺伝子および表現型形質の変位を解析し、草葉における表現型分化の潜在的な要因を同定した。
論文 参考訳(メタデータ) (2024-02-09T20:33:48Z) - Causal machine learning for single-cell genomics [94.28105176231739]
単細胞ゲノミクスへの機械学習技術の応用とその課題について論じる。
まず, 単一細胞生物学における現在の因果的アプローチの基盤となるモデルについて述べる。
次に、単一セルデータへの因果的アプローチの適用におけるオープンな問題を特定する。
論文 参考訳(メタデータ) (2023-10-23T13:35:24Z) - Cancer-inspired Genomics Mapper Model for the Generation of Synthetic
DNA Sequences with Desired Genomics Signatures [0.0]
がんに触発されたゲノムマッパーモデル(CGMM)は、遺伝的アルゴリズム(GA)とディープラーニング(DL)の手法を組み合わせたものである。
我々はCGMMが、祖先や癌などの選択された表現型の合成ゲノムを生成できることを実証した。
論文 参考訳(メタデータ) (2023-05-01T07:16:40Z) - Graph Neural Networks for Microbial Genome Recovery [64.91162205624848]
本稿では,グラフニューラルネットワーク(GNN)を用いて,メダゲノミクスビニングのためのコンティグ表現を学習する際のアセンブリグラフを活用することを提案する。
提案手法であるVaeG-Binは,個々のコンティグの潜在表現を学習するための変分オートエンコーダと,アセンブリグラフ内のコンティグの近傍構造を考慮したGNNを組み合わせる。
論文 参考訳(メタデータ) (2022-04-26T12:49:51Z) - Multi-modal Self-supervised Pre-training for Regulatory Genome Across
Cell Types [75.65676405302105]
我々は、GeneBERTと呼ばれる、多モードかつ自己管理的な方法でゲノムデータを事前学習するための、単純かつ効果的なアプローチを提案する。
我々はATAC-seqデータセットで1700万のゲノム配列でモデルを事前訓練する。
論文 参考訳(メタデータ) (2021-10-11T12:48:44Z) - SimpleChrome: Encoding of Combinatorial Effects for Predicting Gene
Expression [8.326669256957352]
遺伝子のヒストン修飾表現を学習するディープラーニングモデルであるSimpleChromeを紹介します。
このモデルから得られた特徴により、遺伝子間相互作用の潜在効果と標的遺伝子の発現に対する直接遺伝子調節をよりよく理解することができます。
論文 参考訳(メタデータ) (2020-12-15T23:30:36Z) - A Cross-Level Information Transmission Network for Predicting Phenotype
from New Genotype: Application to Cancer Precision Medicine [37.442717660492384]
本稿では,CLEIT(Cross-Level Information Transmission Network)フレームワークを提案する。
ドメイン適応にインスパイアされたCLEITは、まずハイレベルドメインの潜在表現を学び、その後、接地木埋め込みとして利用する。
体細胞突然変異による抗がん剤感受性の予測におけるCLEITの有効性と性能の向上を示す。
論文 参考訳(メタデータ) (2020-10-09T22:01:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。