論文の概要: Twits, Toxic Tweets, and Tribal Tendencies: Trends in Politically
Polarized Posts on Twitter
- arxiv url: http://arxiv.org/abs/2307.10349v1
- Date: Wed, 19 Jul 2023 17:24:47 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-21 15:57:49.873863
- Title: Twits, Toxic Tweets, and Tribal Tendencies: Trends in Politically
Polarized Posts on Twitter
- Title(参考訳): Twits, Toxic Tweets, Tribal Tendencies: Twitter上の政治偏極ポストのトレンド
- Authors: Hans W. A. Hanley, Zakir Durumeric
- Abstract要約: 政治イデオロギーが個人のユーザレベルとTwitterのトピックレベルの両方で毒性に寄与する役割について検討する。
55,415人のTwitterユーザーから1億8700万のツイートを集めた結果、政治イデオロギーやアカウント年齢などのアカウントレベルの特徴が、各ユーザーが有害コンテンツを投稿する頻度を予測する。
- 参考スコア(独自算出の注目度): 4.357949911556638
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Social media platforms are often blamed for exacerbating political
polarization and worsening public dialogue. Many claim hyperpartisan users post
pernicious content, slanted to their political views, inciting contentious and
toxic conversations. However, what factors, actually contribute to increased
online toxicity and negative interactions? In this work, we explore the role
that political ideology plays in contributing to toxicity both on an individual
user level and a topic level on Twitter. To do this, we train and open-source a
DeBERTa-based toxicity detector with a contrastive objective that outperforms
the Google Jigsaw Persective Toxicity detector on the Civil Comments test
dataset. Then, after collecting 187 million tweets from 55,415 Twitter users,
we determine how several account-level characteristics, including political
ideology and account age, predict how often each user posts toxic content.
Running a linear regression, we find that the diversity of views and the
toxicity of the other accounts with which that user engages has a more marked
effect on their own toxicity. Namely, toxic comments are correlated with users
who engage with a wider array of political views. Performing topic analysis on
the toxic content posted by these accounts using the large language model MPNet
and a version of the DP-Means clustering algorithm, we find similar behavior
across 6,592 individual topics, with conversations on each topic becoming more
toxic as a wider diversity of users become involved.
- Abstract(参考訳): ソーシャルメディアプラットフォームは、政治的分極の悪化と大衆の対話の悪化によってしばしば非難される。
多くの主張では、過党派のユーザーは、政治的見解にこだわる悪質なコンテンツを投稿し、批判的で有害な会話を呼び起こした。
しかし、オンライン毒性の増加とネガティブな相互作用に実際に寄与する要因は何か?
本研究では,政治的イデオロギーが個人のユーザレベルでも,Twitter上でもトピックレベルでも毒性に寄与する役割について考察する。
そのために、DeBERTaベースの毒性検知器をトレーニングし、オープンソースにして、Civil Commentsテストデータセット上でGoogle Jigsaw Persective Toxicity検出器よりも優れた、対照的な目標を達成しました。
そして、55,415人のTwitterユーザーから1億8700万のツイートを収集し、政治イデオロギーやアカウント年齢などのアカウントレベルの特徴が、各ユーザーが有害コンテンツを投稿する頻度を予測する。
線形回帰を実行すると、ビューの多様性と、ユーザが関与する他のアカウントの毒性が、自身の毒性により顕著な影響を及ぼすことがわかった。
つまり、有害なコメントは、より幅広い政治的見解に携わるユーザーと相関している。
大規模言語モデルMPNetとDP-Meansクラスタリングアルゴリズムを用いてこれらのアカウントが投稿した有害コンテンツに関するトピック分析を行い、6,592件のトピックに類似した振る舞いを見出した。
関連論文リスト
- Characterization of Political Polarized Users Attacked by Language Toxicity on Twitter [3.0367864044156088]
本研究は,左,右,センター利用者の言語毒性フローを初めて調査することを目的とする。
5億件以上のTwitter投稿が調査された。
その結果、左派ユーザーは右派やセンター派よりもはるかに有毒な回答が得られた。
論文 参考訳(メタデータ) (2024-07-17T10:49:47Z) - Analyzing Norm Violations in Live-Stream Chat [49.120561596550395]
本研究は,ライブストリーミングプラットフォーム上での会話における規範違反を検出することを目的とした,最初のNLP研究である。
ライブストリームチャットにおける標準違反カテゴリを定義し、Twitchから4,583のコメントを注釈付けします。
以上の結果から,適切なコンテキスト情報がモデレーション性能を35%向上させる可能性が示唆された。
論文 参考訳(メタデータ) (2023-05-18T05:58:27Z) - Sub-Standards and Mal-Practices: Misinformation's Role in Insular, Polarized, and Toxic Interactions on Reddit [5.161088104035108]
信頼できないニュースサイトの記事に対するコメントは、右利きのサブレディットに掲載されることが多い。
サブレディットの毒性が高まるにつれて、ユーザーは既知の信頼できないウェブサイトからの投稿にコメントする傾向にある。
論文 参考訳(メタデータ) (2023-01-27T01:32:22Z) - Non-Polar Opposites: Analyzing the Relationship Between Echo Chambers
and Hostile Intergroup Interactions on Reddit [66.09950457847242]
Redditユーザーの5.97万人の活動と、13年間に投稿された421万人のコメントについて調査した。
我々は、ユーザーが互いに有害であるかどうかに基づいて、政治コミュニティ間の関係のタイプロジを作成する。
論文 参考訳(メタデータ) (2022-11-25T22:17:07Z) - Annotators with Attitudes: How Annotator Beliefs And Identities Bias
Toxic Language Detection [75.54119209776894]
本研究では,アノテータのアイデンティティ(誰)と信念(なぜ)が有害な言語アノテーションに与える影響について検討する。
我々は、アンチブラック言語、アフリカ系アメリカ人の英語方言、俗語という3つの特徴を持つポストを考察する。
以上の結果から,アノテータのアイデンティティと信念と毒性評価の相関が強く示唆された。
論文 参考訳(メタデータ) (2021-11-15T18:58:20Z) - News consumption and social media regulations policy [70.31753171707005]
我々は、ニュース消費とコンテンツ規制の間の相互作用を評価するために、反対のモデレーション手法であるTwitterとGabを強制した2つのソーシャルメディアを分析した。
以上の結果から,Twitterが追求するモデレーションの存在は,疑わしいコンテンツを著しく減少させることがわかった。
Gabに対する明確な規制の欠如は、ユーザが両方のタイプのコンテンツを扱う傾向を生じさせ、ディスカウント/エンドレスメントの振る舞いを考慮に入れた疑わしいコンテンツに対してわずかに好みを示す。
論文 参考訳(メタデータ) (2021-06-07T19:26:32Z) - Designing Toxic Content Classification for a Diversity of Perspectives [15.466547856660803]
我々は17,280人の参加者を対象に,有毒なコンテンツを構成するものに対するユーザの期待が,人口動態,信念,個人的経験によってどのように異なるかを調査した。
歴史的に嫌がらせのリスクがあるグループは、Reddit、Twitter、あるいは4chanから無作為なコメントを有害であると警告する傾向にある。
JigsawのパースペクティブAPIのような、現在の一大毒性分類アルゴリズムは、パーソナライズされたモデルチューニングによって、平均86%の精度で改善できることを示す。
論文 参考訳(メタデータ) (2021-06-04T16:45:15Z) - Right and left, partisanship predicts (asymmetric) vulnerability to
misinformation [71.46564239895892]
我々は、Twitter上でのニュース共有行動を研究することにより、パルチザン、エコーチャンバー、およびオンライン誤情報に対する脆弱性の関係を分析する。
誤情報に対する脆弱性は、左派と右派の両方のユーザーの党派の影響を強く受けている。
論文 参考訳(メタデータ) (2020-10-04T01:36:14Z) - Racism is a Virus: Anti-Asian Hate and Counterspeech in Social Media
during the COVID-19 Crisis [51.39895377836919]
新型コロナウイルスは、アジアのコミュニティをターゲットにしたソーシャルメディア上で人種差別や憎悪を引き起こしている。
我々は、Twitterのレンズを通して、反アジアヘイトスピーチの進化と普及について研究する。
私たちは、14ヶ月にわたる反アジア的憎悪と反音声のデータセットとして最大となるCOVID-HATEを作成します。
論文 参考訳(メタデータ) (2020-05-25T21:58:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。