論文の概要: A data science axiology: the nature, value, and risks of data science
- arxiv url: http://arxiv.org/abs/2307.10460v2
- Date: Fri, 21 Jul 2023 21:32:12 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-25 19:59:02.536424
- Title: A data science axiology: the nature, value, and risks of data science
- Title(参考訳): データサイエンスの公理:データサイエンスの性質、価値、リスク
- Authors: Michael L. Brodie
- Abstract要約: データサイエンスは、知識発見のための未完成のスコープ、スケール、複雑さ、パワーを持つ研究パラダイムである。
本稿では、データサイエンスの公理、その目的、性質、重要性、リスク、問題解決の価値について述べる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data science is not a science. It is a research paradigm with an unfathomed
scope, scale, complexity, and power for knowledge discovery that is not
otherwise possible and can be beyond human reasoning. It is changing our world
practically and profoundly already widely deployed in tens of thousands of
applications in every discipline in an AI Arms Race that, due to its
inscrutability, can lead to unfathomed risks. This paper presents an axiology
of data science, its purpose, nature, importance, risks, and value for problem
solving, by exploring and evaluating its remarkable, definitive features. As
data science is in its infancy, this initial, speculative axiology is intended
to aid in understanding and defining data science to recognize its potential
benefits, risks, and open research challenges. AI based data science is
inherently about uncertainty that may be more realistic than our preference for
the certainty of science. Data science will have impacts far beyond knowledge
discovery and will take us into new ways of understanding the world.
- Abstract(参考訳): データサイエンスは科学ではない。
未知のスコープ、スケール、複雑さ、知識発見の力を持つ研究パラダイムであり、そうでなければ不可能であり、人間の推論を超えることができる。
AIアームレースのあらゆる分野において、すでに何万ものアプリケーションに広く展開されている私たちの世界は、現実的にも深くも変化しています。
本稿では,データ科学の公理,その目的,性質,重要性,リスク,および問題解決の価値について,その顕著な,決定的な特徴を探求し,評価する。
データ科学が初期段階にあるため、この初期の投機的公理学は、データ科学を理解して定義し、その潜在的な利益、リスク、そしてオープンな研究課題を認識することを目的としている。
AIベースのデータサイエンスは本質的に、科学の確実性よりも現実的な不確実性に関するものです。
データサイエンスは、知識発見を超えて、世界を理解する新しい方法に私たちを導いてくれるでしょう。
関連論文リスト
- Explain the Black Box for the Sake of Science: the Scientific Method in the Era of Generative Artificial Intelligence [0.9065034043031668]
科学的手法は自然科学と応用科学の全ての分野における人間の進歩の基盤である。
我々は、人類の科学的発見のための複雑な推論が、少なくとも人工知能の出現以前には重要な存在であると主張している。
決定を下す上で重要なデータAIシステムを知ることは、ドメインの専門家や科学者との接触点になる可能性がある。
論文 参考訳(メタデータ) (2024-06-15T08:34:42Z) - Control Risk for Potential Misuse of Artificial Intelligence in Science [85.91232985405554]
我々は、科学におけるAI誤用の危険性の認識を高めることを目的としている。
化学科学における誤用の実例を取り上げる。
我々は、科学におけるAIモデルの誤用リスクを制御するSciGuardというシステムを提案する。
論文 参考訳(メタデータ) (2023-12-11T18:50:57Z) - Artificial Intelligence for Science in Quantum, Atomistic, and Continuum Systems [268.585904751315]
科学のためのAI(AI4Science)として知られる新しい研究領域
領域は、物理世界(波動関数と電子密度)、原子(分子、タンパク質、物質、相互作用)、マクロ(流体、気候、地下)まで理解することを目的としている。
主要な課題は、物理第一原理、特に対称性を深層学習法によって自然システムで捉える方法である。
論文 参考訳(メタデータ) (2023-07-17T12:14:14Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
機械学習とAIの最近の進歩は、技術革新、製品開発、社会全体を破壊している。
AIは、科学的な実践とモデル発見のための高品質なデータの大規模なデータセットへのアクセスがより困難であるため、基礎科学にはあまり貢献していない。
ここでは、科学的な発見に対するAI駆動、自動化、クローズドループアプローチの側面を調査し、調査する。
論文 参考訳(メタデータ) (2023-07-09T21:16:56Z) - Defining data science: a new field of inquiry [0.0]
現代のデータサイエンスは生まれたばかりで、1962年から徐々に発展し、2000年から急速に発展し、21世紀の最も活発で強力で急速に進化しているイノベーションの1つです。
その価値、パワー、適用性のために、40以上の分野、何百もの研究領域、何千ものアプリケーションで登場しています。
本研究は、データサイエンス参照フレームワークに基づく一貫性のある統一された定義の開発を提案することにより、このデータサイエンスの多重定義問題に対処する。
論文 参考訳(メタデータ) (2023-06-28T12:58:42Z) - Modeling Information Change in Science Communication with Semantically
Matched Paraphrases [50.67030449927206]
SPICEDは、情報変化の度合いに注釈を付けた科学的な発見の最初のパラフレーズデータセットである。
SPICEDには、ニュース記事、ソーシャルメディアの議論、オリジナル論文の全文から抽出された6000の科学的発見ペアが含まれている。
SPICEDで訓練されたモデルは、実世界の科学的主張の事実チェックのための証拠検索において下流のパフォーマンスを改善する。
論文 参考訳(メタデータ) (2022-10-24T07:44:38Z) - Learning from learning machines: a new generation of AI technology to
meet the needs of science [59.261050918992325]
科学的な発見のためのAIの有用性を高めるための新たな機会と課題を概説する。
産業におけるAIの目標と科学におけるAIの目標の区別は、データ内のパターンを識別することと、データから世界のパターンを発見することとの間に緊張を生じさせる。
論文 参考訳(メタデータ) (2021-11-27T00:55:21Z) - Biases in Data Science Lifecycle [0.0]
本研究の目的は,データ科学者の実践的ガイドラインを提供し,その意識を高めることである。
この研究では、さまざまなバイアス源をレビューし、データサイエンスライフサイクルの異なる段階の下でグループ化しました。
論文 参考訳(メタデータ) (2020-09-10T13:41:48Z) - Data Science: Challenges and Directions [42.98602883069444]
データサイエンスのタイトルを含む何百もの文献をレビューする。
議論の大部分は、統計、データマイニング、機械学習、ビッグデータ、あるいは広範なデータ分析に関するものだと考えています。
我々は、複雑なシステムとしてのデータサイエンス問題の性質にインスパイアされた研究とイノベーションの課題に焦点を当てる。
論文 参考訳(メタデータ) (2020-06-28T01:49:00Z) - Ten Research Challenge Areas in Data Science [4.670305538969914]
データサイエンスは、コンピュータ科学、数学、統計学、その他の分野の知識に基づいている。
この記事では、データサイエンスの専門分野としてのメタクエストから始め、データサイエンスの研究課題の基礎となる10のアイデアについて詳述する。
論文 参考訳(メタデータ) (2020-01-27T21:39:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。