論文の概要: Is Grad-CAM Explainable in Medical Images?
- arxiv url: http://arxiv.org/abs/2307.10506v1
- Date: Thu, 20 Jul 2023 00:06:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-21 15:20:48.391444
- Title: Is Grad-CAM Explainable in Medical Images?
- Title(参考訳): Grad-CAMは医療画像で説明できるのか?
- Authors: Subhashis Suara, Aayush Jha, Pratik Sinha, Arif Ahmed Sekh
- Abstract要約: Grad-CAMは、ディープラーニングモデルの意思決定プロセスで使用される画像の最も重要な領域を強調するベースラインである。
これは、分類や説明などの多くのコンピュータビジョン(CV)タスクに適用されている。
本研究では,説明可能な深層学習の原理と医用画像との関連について考察する。
- 参考スコア(独自算出の注目度): 1.3723120574076129
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Explainable Deep Learning has gained significant attention in the field of
artificial intelligence (AI), particularly in domains such as medical imaging,
where accurate and interpretable machine learning models are crucial for
effective diagnosis and treatment planning. Grad-CAM is a baseline that
highlights the most critical regions of an image used in a deep learning
model's decision-making process, increasing interpretability and trust in the
results. It is applied in many computer vision (CV) tasks such as
classification and explanation. This study explores the principles of
Explainable Deep Learning and its relevance to medical imaging, discusses
various explainability techniques and their limitations, and examines medical
imaging applications of Grad-CAM. The findings highlight the potential of
Explainable Deep Learning and Grad-CAM in improving the accuracy and
interpretability of deep learning models in medical imaging. The code is
available in (will be available).
- Abstract(参考訳): 説明可能なディープラーニング(Explainable Deep Learning)は、人工知能(AI)分野、特に医療画像などの領域において、効果的な診断と治療計画のために正確かつ解釈可能な機械学習モデルが不可欠である。
Grad-CAMは、ディープラーニングモデルの意思決定プロセスで使用される画像の最も重要な領域を強調し、解釈可能性を高め、結果に対する信頼を高めるベースラインである。
これは分類や説明など多くのコンピュータビジョン(CV)タスクに適用されている。
本研究では,説明可能な深層学習の原理と医用画像との関連性について考察し,様々な説明可能性技術とその限界について考察し,Grad-CAMの医用画像応用について検討する。
この結果は、医療画像におけるディープラーニングモデルの精度と解釈性を改善するために、説明可能なDeep LearningとGrad-CAMの可能性を浮き彫りにした。
コードは利用可能である(利用可能になる予定)。
関連論文リスト
- Deep Learning Applications in Medical Image Analysis: Advancements, Challenges, and Future Directions [0.0]
人工知能のサブセットであるディープラーニングの最近の進歩は、医療画像の分析に大きな革命をもたらした。
CNNは多次元医用画像から自律的に学習する能力に顕著な能力を示した。
これらのモデルは、病理学、放射線学、眼科、心臓学など、様々な医学分野に利用されてきた。
論文 参考訳(メタデータ) (2024-10-18T02:57:14Z) - MLIP: Enhancing Medical Visual Representation with Divergence Encoder
and Knowledge-guided Contrastive Learning [48.97640824497327]
本稿では、画像テキストのコントラスト学習を通じて、言語情報を視覚領域に統合するための案内信号として、ドメイン固有の医療知識を活用する新しいフレームワークを提案する。
我々のモデルには、設計した分散エンコーダによるグローバルコントラスト学習、局所トークン・知識・パッチアライメントコントラスト学習、知識誘導型カテゴリレベルのコントラスト学習、エキスパートナレッジによるコントラスト学習が含まれる。
特に、MLIPは、限られた注釈付きデータであっても最先端の手法を超越し、医療表現学習の進歩におけるマルチモーダル事前学習の可能性を強調している。
論文 参考訳(メタデータ) (2024-02-03T05:48:50Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
LVM-Medは、大規模医療データセットに基づいてトレーニングされた、最初のディープネットワークファミリーである。
55の公開データセットから約13万の医療画像を収集しました。
LVM-Medは、多くの最先端の教師付き、自己監督型、基礎モデルよりも経験的に優れている。
論文 参考訳(メタデータ) (2023-06-20T22:21:34Z) - Pixel-Level Explanation of Multiple Instance Learning Models in
Biomedical Single Cell Images [52.527733226555206]
複数のインスタンス学習モデルを説明するための4つの属性法について検討する。
急性骨髄性白血病の2つのデータセットと100万以上の単細胞画像について検討した。
我々は、属性マップと医療専門家の注釈を比較し、モデルの意思決定が人間の基準とどのように異なるかを確認する。
論文 参考訳(メタデータ) (2023-03-15T14:00:11Z) - ChatCAD: Interactive Computer-Aided Diagnosis on Medical Image using
Large Language Models [53.73049253535025]
大規模言語モデル(LLM)は、最近臨床応用においてその可能性を実証している。
本稿では,LLMを医療画像CADネットワークに統合する手法を提案する。
LLMの医用領域知識と論理的推論の強みを、既存の医用画像CADモデルの視覚理解能力と融合させることが目的である。
論文 参考訳(メタデータ) (2023-02-14T18:54:06Z) - A Trustworthy Framework for Medical Image Analysis with Deep Learning [71.48204494889505]
TRUDLMIAは医用画像解析のための信頼できるディープラーニングフレームワークである。
新型コロナウイルス(COVID-19)などの公衆衛生危機への対応に深層学習の活用を推進していくため、研究者や臨床医を支援することが期待されている。
論文 参考訳(メタデータ) (2022-12-06T05:30:22Z) - Explainable Deep Learning Methods in Medical Image Classification: A
Survey [0.0]
最先端のディープラーニングモデルは、異なるタイプの医療データの分類において、人間レベルの精度を達成した。
これらのモデルは、主に解釈可能性の欠如のために、臨床ではほとんど採用されていない。
ディープラーニングモデルのブラックボックス性は、これらのモデルの意思決定プロセスを説明するための戦略を考案する必要性を高めている。
論文 参考訳(メタデータ) (2022-05-10T09:28:14Z) - Recent advances and clinical applications of deep learning in medical
image analysis [7.132678647070632]
我々は最近200以上の論文をレビュー・要約し、様々な医用画像解析タスクにおける深層学習手法の適用の概要を概観した。
特に,医用画像における最先端の非教師あり半教師あり深層学習の進歩と貢献を強調した。
論文 参考訳(メタデータ) (2021-05-27T18:05:12Z) - An Interpretable Multiple-Instance Approach for the Detection of
referable Diabetic Retinopathy from Fundus Images [72.94446225783697]
基礎画像における参照糖尿病網膜症検出のための機械学習システムを提案する。
画像パッチから局所情報を抽出し,アテンション機構により効率的に組み合わせることで,高い分類精度を実現することができる。
我々は,現在入手可能な網膜画像データセットに対するアプローチを評価し,最先端の性能を示す。
論文 参考訳(メタデータ) (2021-03-02T13:14:15Z) - Medical Image Harmonization Using Deep Learning Based Canonical Mapping:
Toward Robust and Generalizable Learning in Imaging [4.396671464565882]
多様な取得条件のデータを共通参照領域に"調和"する新しいパラダイムを提案する。
我々は,MRIによる脳年齢予測と統合失調症の分類という,2つの問題に対して本手法を検証した。
論文 参考訳(メタデータ) (2020-10-11T22:01:37Z) - A review of deep learning in medical imaging: Imaging traits, technology
trends, case studies with progress highlights, and future promises [27.16172003905426]
医用画像の特徴を最初に提示し,臨床ニーズと医用画像の技術的課題の両方を強調した。
次に, デジタル診断, 胸部, 脳, 心血管, 腹部画像検査など, 臨床現場で一般的に見られるいくつかの症例について報告する。
論文 参考訳(メタデータ) (2020-08-02T14:26:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。