論文の概要: Air Traffic Controller Workload Level Prediction using Conformalized
Dynamical Graph Learning
- arxiv url: http://arxiv.org/abs/2307.10559v2
- Date: Sat, 22 Jul 2023 05:13:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-25 11:24:24.445998
- Title: Air Traffic Controller Workload Level Prediction using Conformalized
Dynamical Graph Learning
- Title(参考訳): 共形動的グラフ学習を用いたエアトラヒックコントローラの負荷レベル予測
- Authors: Yutian Pang, Jueming Hu, Christopher S. Lieber, Nancy J. Cooke,
Yongming Liu
- Abstract要約: 我々は,ATCoのワークロードレベルを特定するために,共形予測を備えたグラフベースのディープラーニングフレームワークを提案する。
実験の結果, (a) 交通密度特性に加えて, 交通競合特性が作業負荷予測機能に寄与していることが示唆された。
- 参考スコア(独自算出の注目度): 3.622365857213782
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Air traffic control (ATC) is a safety-critical service system that demands
constant attention from ground air traffic controllers (ATCos) to maintain
daily aviation operations. The workload of the ATCos can have negative effects
on operational safety and airspace usage. To avoid overloading and ensure an
acceptable workload level for the ATCos, it is important to predict the ATCos'
workload accurately for mitigation actions. In this paper, we first perform a
review of research on ATCo workload, mostly from the air traffic perspective.
Then, we briefly introduce the setup of the human-in-the-loop (HITL)
simulations with retired ATCos, where the air traffic data and workload labels
are obtained. The simulations are conducted under three Phoenix approach
scenarios while the human ATCos are requested to self-evaluate their workload
ratings (i.e., low-1 to high-7). Preliminary data analysis is conducted. Next,
we propose a graph-based deep-learning framework with conformal prediction to
identify the ATCo workload levels. The number of aircraft under the
controller's control varies both spatially and temporally, resulting in
dynamically evolving graphs. The experiment results suggest that (a) besides
the traffic density feature, the traffic conflict feature contributes to the
workload prediction capabilities (i.e., minimum horizontal/vertical separation
distance); (b) directly learning from the spatiotemporal graph layout of
airspace with graph neural network can achieve higher prediction accuracy,
compare to hand-crafted traffic complexity features; (c) conformal prediction
is a valuable tool to further boost model prediction accuracy, resulting a
range of predicted workload labels. The code used is available at
\href{https://github.com/ymlasu/para-atm-collection/blob/master/air-traffic-prediction/ATC-Workload-Predic tion/}{$\mathsf{Link}$}.
- Abstract(参考訳): 航空管制 (atc) は、地上交通管制局 (atcos) が日々の航空運用を維持するために常に注意を払わなければならない安全クリティカルサービスシステムである。
ATCoの作業負荷は、運用上の安全性と空域利用に悪影響を及ぼす可能性がある。
ATCosの過負荷を回避し、許容されるワークロードレベルを確保するためには、ATCosのワークロードを正確に予測することが重要である。
本稿では,まず,航空交通の観点からatcoの作業負荷に関する研究を概観した。
そこで,本研究では,航空交通データとワークロードラベルが得られたATCoによるHuman-in-the-loop(HITL)シミュレーションのセットアップについて紹介する。
シミュレーションは3つのphoenixアプローチのシナリオで行われ、ヒトのatcoは負荷評価(低-1から高7)を自己評価するよう要求される。
予備データ分析を行う。
次に,共形予測を用いたグラフベースのディープラーニングフレームワークを提案し,atcoのワークロードレベルを同定する。
制御器の制御下にある航空機の数は空間的にも時間的にも変化し、動的に進化するグラフとなる。
実験結果は
(a)トラフィック密度機能以外に、トラフィック競合機能は、ワークロードの予測能力(すなわち、最小水平/垂直分離距離)に寄与する。
b) グラフニューラルネットワークを用いた空域の時空間グラフレイアウトから直接学習することにより,手作りの交通複雑性特性と比較して,高い予測精度が得られる。
c) 適合予測(conformal prediction)は,モデル予測精度をさらに向上させる上で有用なツールである。
使用されるコードは \href{https://github.com/ymlasu/para-atm-collection/blob/master/air-traffic-prediction/ATC-Workload-Predic tion/}{$\mathsf{Link}$} で公開されている。
関連論文リスト
- PreGSU-A Generalized Traffic Scene Understanding Model for Autonomous Driving based on Pre-trained Graph Attention Network [23.38434020807342]
交通要素間の相互作用の学習、抽出、表現として定義されたシーン理解は、ハイレベル自律運転(AD)における重要な課題の1つである。
現在のシーン理解手法は主に、軌道予測やリスクレベル評価などの1つの具体的な単一タスクに焦点を当てている。
グラフアテンションネットワークに基づく一般化された事前学習シーン理解モデルであるPreGSUを提案し、様々な下流タスクをサポートするために、交通シーンの普遍的相互作用と推論を学習する。
論文 参考訳(メタデータ) (2024-04-16T03:34:35Z) - Big data-driven prediction of airspace congestion [40.02298833349518]
国立航空宇宙システム(NAS)内の特定の空域セクターの航空機数を正確に予測する新しいデータ管理・予測システムを提案する。
前処理ステップでは、システムは受信した生データを処理し、それをコンパクトなサイズに減らし、コンパクトなデータベースに格納する。
予測段階において、システムは歴史的軌跡から学習し、そのセグメントを使用して、セクター境界交差、気象パラメータ、その他の航空交通データなどの重要な特徴を収集する。
論文 参考訳(メタデータ) (2023-10-13T09:57:22Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
自動運転車(SDV)は、周囲を認識でき、他の交通参加者の将来の行動を予測できなければならない。
既存の作業は、検出されたオブジェクトの軌跡が続くオブジェクト検出を実行するか、シーン全体の密度の高い占有とフローグリッドを予測するかのいずれかである。
これは、認識と将来の予測に対する統一されたアプローチを動機付け、単一のニューラルネットワークで時間とともに占有とフローを暗黙的に表現します。
論文 参考訳(メタデータ) (2023-08-02T23:39:24Z) - GraphDAC: A Graph-Analytic Approach to Dynamic Airspace Configuration [24.461948296296274]
ナショナル・エアスペース・システム(NAS)は、航空交通量の増加により能力に到達しており、時代遅れの戦術的計画に基づいている。
本研究では,よりダイナミックな空域構成(DAC)アプローチを提案する。
論文 参考訳(メタデータ) (2023-07-29T03:04:22Z) - ADAPT: Efficient Multi-Agent Trajectory Prediction with Adaptation [0.0]
ADAPTはダイナミックウェイトラーニングによってシーン内の全てのエージェントの軌道を共同で予測するための新しいアプローチである。
提案手法は, 単一エージェントと複数エージェントの設定において, 最先端の手法よりも優れている。
論文 参考訳(メタデータ) (2023-07-26T13:41:51Z) - Integrating spoken instructions into flight trajectory prediction to optimize automation in air traffic control [20.718663626382995]
現在の航空交通管制システムでは、交通予測のための音声指示を考慮できない。
本稿では,制御意図を情報処理ループに統合する自動化パラダイムを提案する。
3段階のプログレッシブ・マルチモーダル・ラーニング・パラダイムを提案する。
論文 参考訳(メタデータ) (2023-05-02T08:28:55Z) - Control-Aware Prediction Objectives for Autonomous Driving [78.19515972466063]
本研究では,制御に対する予測の下流効果を評価するための制御認識予測目標(CAPOs)を提案する。
本稿では,エージェント間の注意モデルを用いた重み付けと,予測軌跡を接地真実軌跡に交換する際の制御変動に基づく重み付けの2つの方法を提案する。
論文 参考訳(メタデータ) (2022-04-28T07:37:21Z) - OSCAR: Data-Driven Operational Space Control for Adaptive and Robust
Robot Manipulation [50.59541802645156]
オペレーショナル・スペース・コントロール(OSC)は、操作のための効果的なタスクスペース・コントローラとして使われてきた。
本稿では,データ駆動型OSCのモデル誤差を補償するOSC for Adaptation and Robustness (OSCAR)を提案する。
本手法は,様々なシミュレーション操作問題に対して評価し,制御器のベースラインの配列よりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2021-10-02T01:21:38Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
識別オートエンコーダ(DAE)と呼ばれる新しい異常検出モデルを提案する。
通常のLSTMベースのオートエンコーダのベースラインを使用するが、いくつかのデコーダがあり、それぞれ特定の飛行フェーズのデータを取得する。
その結果,DAEは精度と検出速度の両方で良好な結果が得られることがわかった。
論文 参考訳(メタデータ) (2021-09-08T14:07:55Z) - Injecting Knowledge in Data-driven Vehicle Trajectory Predictors [82.91398970736391]
車両軌道予測タスクは、一般的に知識駆動とデータ駆動の2つの視点から取り組まれている。
本稿では,これら2つの視点を効果的に結合する「現実的残留ブロック」 (RRB) の学習を提案する。
提案手法は,残留範囲を限定し,その不確実性を考慮した現実的な予測を行う。
論文 参考訳(メタデータ) (2021-03-08T16:03:09Z) - Federated Learning in the Sky: Aerial-Ground Air Quality Sensing
Framework with UAV Swarms [53.38353133198842]
空気質は人間の健康に大きく影響し、空気質指数(AQI)の正確かつタイムリーな予測がますます重要になっている。
本稿では, 精密な3次元空気質モニタリングと予測を行うための, 新たなフェデレーション学習型地上空気質検知フレームワークを提案する。
地中センシングシステムでは, グラフ畳み込みニューラルネットワークを用いたLong Short-Term Memory (GC-LSTM) モデルを提案し, 高精度, リアルタイム, 将来的なAQI推論を実現する。
論文 参考訳(メタデータ) (2020-07-23T13:32:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。