論文の概要: Graph machine learning for flight delay prediction due to holding manouver
- arxiv url: http://arxiv.org/abs/2502.04233v1
- Date: Thu, 06 Feb 2025 17:18:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-07 14:31:17.528089
- Title: Graph machine learning for flight delay prediction due to holding manouver
- Title(参考訳): ホールディングマニュバーによる飛行遅延予測のためのグラフ機械学習
- Authors: Jorge L. Franco, Manoel V. Machado Neto, Filipe A. N. Verri, Diego R. Amancio,
- Abstract要約: 本研究は,グラフ問題としての保持操作による飛行遅延の予測をモデル化する。
我々は、高度なグラフ機械学習(Graph ML)技術を活用し、航空交通網の複雑な相互依存を捉える。
我々は、ユーザがリアルタイム遅延予測をシミュレートできるWebベースのツールを通じて、モデルが潜在的に運用に与える影響について論じる。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Flight delays due to holding maneuvers are a critical and costly phenomenon in aviation, driven by the need to manage air traffic congestion and ensure safety. Holding maneuvers occur when aircraft are instructed to circle in designated airspace, often due to factors such as airport congestion, adverse weather, or air traffic control restrictions. This study models the prediction of flight delays due to holding maneuvers as a graph problem, leveraging advanced Graph Machine Learning (Graph ML) techniques to capture complex interdependencies in air traffic networks. Holding maneuvers, while crucial for safety, cause increased fuel usage, emissions, and passenger dissatisfaction, making accurate prediction essential for operational efficiency. Traditional machine learning models, typically using tabular data, often overlook spatial-temporal relations within air traffic data. To address this, we model the problem of predicting holding as edge feature prediction in a directed (multi)graph where we apply both CatBoost, enriched with graph features capturing network centrality and connectivity, and Graph Attention Networks (GATs), which excel in relational data contexts. Our results indicate that CatBoost outperforms GAT in this imbalanced dataset, effectively predicting holding events and offering interpretability through graph-based feature importance. Additionally, we discuss the model's potential operational impact through a web-based tool that allows users to simulate real-time delay predictions. This research underscores the viability of graph-based approaches for predictive analysis in aviation, with implications for enhancing fuel efficiency, reducing delays, and improving passenger experience.
- Abstract(参考訳): 操縦操作による飛行遅延は、航空交通渋滞の管理と安全確保の必要性により、航空において重要かつコストのかかる現象である。
航空機が空港の混雑、悪天候、航空管制規制などの要因により、指定された空域で円周するように指示されたときに、保持操作が行われる。
本研究は, 高速グラフ機械学習(Graph ML)技術を利用して, 航空交通網の複雑な相互依存性を捉えることにより, ホールド操作による飛行遅延の予測をグラフ問題としてモデル化する。
安全のために重要な操作を行うと、燃料の使用量、排出量、乗客の不満が増加し、正確な予測が運用効率に不可欠になった。
従来の機械学習モデルは、通常、表形式のデータを使用しており、しばしば航空交通データ内の空間的時間的関係を見落としている。
そこで我々は,ネットワークの集中度と接続性を捉えるグラフ機能に富んだCatBoostと,関係データコンテキストに優れたグラフアテンションネットワーク(GAT)を併用した,有向(多重)グラフにおけるエッジ特徴予測の保持に関する問題をモデル化する。
以上の結果から,CatBoostは,この不均衡なデータセットにおいてGATよりも優れており,イベントの保持を効果的に予測し,グラフベースの機能の重要性を通じて解釈可能性を提供する。
さらに、ユーザがリアルタイム遅延予測をシミュレートできるWebベースのツールを用いて、モデルが潜在的に運用に与える影響について論じる。
本研究は, 航空機の燃料効率の向上, 遅延低減, 乗客の体験向上に寄与する, 航空における予測分析のためのグラフベースのアプローチの実現可能性を明らかにするものである。
関連論文リスト
- Multi-Source Urban Traffic Flow Forecasting with Drone and Loop Detector Data [61.9426776237409]
ドローンが捉えたデータは、大規模都市ネットワークのための正確なマルチセンサー移動観測所を作ることができる。
単純なグラフベースモデルHiMSNetは、複数のデータモダリティと学習時間相関を統合するために提案されている。
論文 参考訳(メタデータ) (2025-01-07T03:23:28Z) - Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
本稿ではSGCN-LSTM(Signal-Enhanced Graph Convolutional Network Long Short Term Memory)モデルを提案する。
PEMS-BAYロードネットワークトラフィックデータセットの実験は、SGCN-LSTMモデルの有効性を示す。
論文 参考訳(メタデータ) (2024-11-01T00:37:00Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
都市フロー予測は、バス、タクシー、ライド駆動モデルといった交通サービスのスループットを見積もる、微妙な時間的モデリングである。
最近の予測解は、物理学誘導機械学習(PGML)の概念による改善をもたらす。
我々は、PN(atized Physics-guided Network)を開発し、P-GASR(Physical-guided Active Sample Reweighting)を提案する。
論文 参考訳(メタデータ) (2024-07-18T15:44:23Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
自動運転車(SDV)は、周囲を認識でき、他の交通参加者の将来の行動を予測できなければならない。
既存の作業は、検出されたオブジェクトの軌跡が続くオブジェクト検出を実行するか、シーン全体の密度の高い占有とフローグリッドを予測するかのいずれかである。
これは、認識と将来の予測に対する統一されたアプローチを動機付け、単一のニューラルネットワークで時間とともに占有とフローを暗黙的に表現します。
論文 参考訳(メタデータ) (2023-08-02T23:39:24Z) - Air Traffic Controller Workload Level Prediction using Conformalized
Dynamical Graph Learning [3.622365857213782]
我々は,ATCoのワークロードレベルを特定するために,共形予測を備えたグラフベースのディープラーニングフレームワークを提案する。
実験の結果, (a) 交通密度特性に加えて, 交通競合特性が作業負荷予測機能に寄与していることが示唆された。
論文 参考訳(メタデータ) (2023-07-20T03:54:47Z) - Uncovering the Missing Pattern: Unified Framework Towards Trajectory
Imputation and Prediction [60.60223171143206]
軌道予測は、観測されたシーケンスから実体運動や人間の行動を理解する上で重要な作業である。
現在の方法では、観測されたシーケンスが完了したと仮定し、欠落した値の可能性を無視する。
本稿では,グラフに基づく条件変動リカレントニューラルネットワーク (GC-VRNN) の統一フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-28T14:27:27Z) - Phased Flight Trajectory Prediction with Deep Learning [8.898269198985576]
過去10年間で民間航空会社や民間機が前例のない増加を遂げたことは、航空交通管理の課題となっている。
正確な飛行軌跡予測は、安全かつ秩序ある飛行の決定に寄与する航空輸送管理において非常に重要である。
本研究では,大型旅客・輸送航空機の飛行軌道予測における最先端手法よりも優れた位相付き飛行軌道予測フレームワークを提案する。
論文 参考訳(メタデータ) (2022-03-17T02:16:02Z) - Multi-Airport Delay Prediction with Transformers [0.0]
TFT(Temporal Fusion Transformer)は、複数の空港での出発と到着の遅れを同時に予測するために提案された。
このアプローチは、予測時に既知の入力の複雑な時間的ダイナミクスをキャプチャし、選択された遅延メトリクスを4時間先まで予測することができる。
論文 参考訳(メタデータ) (2021-11-04T21:58:11Z) - SGCN:Sparse Graph Convolution Network for Pedestrian Trajectory
Prediction [64.16212996247943]
歩行者軌道予測のためのスパースグラフ畳み込みネットワーク(SGCN)を提案する。
具体的には、SGCNはスパース指向の相互作用をスパース指向の空間グラフと明確にモデル化し、適応的な相互作用歩行者を捉える。
可視化は,歩行者の適応的相互作用とその運動特性を捉えることができることを示す。
論文 参考訳(メタデータ) (2021-04-04T03:17:42Z) - Spatio-Temporal Data Mining for Aviation Delay Prediction [15.621546618044173]
本研究では,商業飛行における長期記憶ネットワーク(LSTM)に基づく航空機遅延予測システムを提案する。
このシステムは、自動監視放送(ADS-B)メッセージから歴史的軌跡から学習する。
従来と比べ,大規模なハブ空港ではより堅牢で正確であることが実証された。
論文 参考訳(メタデータ) (2021-03-20T18:37:06Z) - Flight Time Prediction for Fuel Loading Decisions with a Deep Learning
Approach [3.285168337194676]
航空は常に新しい技術を模索し、燃料消費を減らすために飛行を最適化している。
過剰な燃料は、燃料消費の不確実性を扱うために、派遣者や(または)パイロットによってロードされる。
我々は,より優れた飛行時間予測を実現するために,空間重み付きリカレントニューラルネットワークモデルを開発した。
論文 参考訳(メタデータ) (2020-05-12T11:05:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。