論文の概要: Post-variational quantum neural networks
- arxiv url: http://arxiv.org/abs/2307.10560v1
- Date: Thu, 20 Jul 2023 03:55:53 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-21 15:01:55.692257
- Title: Post-variational quantum neural networks
- Title(参考訳): 変分後量子ニューラルネットワーク
- Authors: Po-Wei Huang, Patrick Rebentrost
- Abstract要約: 量子コンピュータから古典コンピュータへ可変パラメータをシフトする「変分戦略」について論じる。
このアルゴリズムは手書き桁のイメージ分類などの実世界の応用に適用でき、96%の精度で分類できることを示す。
- 参考スコア(独自算出の注目度): 1.52292571922932
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum computing has the potential to provide substantial computational
advantages over current state-of-the-art classical supercomputers. However,
current hardware is not advanced enough to execute fault-tolerant quantum
algorithms. An alternative of using hybrid quantum-classical computing with
variational algorithms can exhibit barren plateau issues, causing slow
convergence of gradient-based optimization techniques. In this paper, we
discuss "post-variational strategies", which shift tunable parameters from the
quantum computer to the classical computer, opting for ensemble strategies when
optimizing quantum models. We discuss various strategies and design principles
for constructing individual quantum circuits, where the resulting ensembles can
be optimized with convex programming. Further, we discuss architectural designs
of post-variational quantum neural networks and analyze the propagation of
estimation errors throughout such neural networks. Lastly, we show that our
algorithm can be applied to real-world applications such as image
classification on handwritten digits, producing a 96% classification accuracy.
- Abstract(参考訳): 量子コンピューティングは、現在の最先端の古典的スーパーコンピュータよりも大きな計算上の利点を提供する可能性がある。
しかし、現在のハードウェアはフォールトトレラント量子アルゴリズムを実行するには不十分である。
変分アルゴリズムを用いたハイブリッド量子古典計算の代替として、バレンプラトー問題があり、勾配に基づく最適化手法の収束が遅い。
本稿では,量子モデル最適化において,可変パラメータを量子コンピュータから古典コンピュータにシフトし,アンサンブル戦略を選択する「変分後戦略」について述べる。
個々の量子回路を構築するための様々な戦略と設計原則について論じ、その結果のアンサンブルを凸プログラミングで最適化することができる。
さらに,変分後量子ニューラルネットワークのアーキテクチャ設計について検討し,そのようなニューラルネットワークにおける推定誤差の伝播解析を行う。
最後に,手書き桁のイメージ分類などの実世界の応用に適用し,96%の精度で分類できることを示す。
関連論文リスト
- Let the Quantum Creep In: Designing Quantum Neural Network Models by
Gradually Swapping Out Classical Components [1.024113475677323]
現代のAIシステムはニューラルネットワーク上に構築されることが多い。
古典的ニューラルネットワーク層を量子層に置き換える枠組みを提案する。
画像分類データセットの数値実験を行い、量子部品の体系的導入による性能変化を実証する。
論文 参考訳(メタデータ) (2024-09-26T07:01:29Z) - A Hybrid Quantum-Classical Physics-Informed Neural Network Architecture for Solving Quantum Optimal Control Problems [1.4811951486536687]
この研究は、量子状態操作を最適化するための革新的なアプローチを示している。
提案したハイブリッドモデルは,最適制御問題の解法として機械学習手法を効果的に適用する。
これは、量子状態遷移問題を解決するために、ハイブリッドPINNネットワークの設計と実装を通して説明される。
論文 参考訳(メタデータ) (2024-04-23T13:22:22Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
変分量子アルゴリズム(VQA)は、最適化と機械学習問題を解決するための有望な量子代替手段として登場した。
本稿では,回路設計が2つの分類問題に対して得られる性能に与える影響を実験的に示す。
また、実量子コンピュータのシミュレーションにおいて、ノイズの存在下で得られた回路の劣化について検討する。
論文 参考訳(メタデータ) (2024-04-17T11:00:12Z) - Towards Efficient Quantum Hybrid Diffusion Models [68.43405413443175]
本稿では,量子ハイブリッド拡散モデルの設計手法を提案する。
量子コンピューティングの優れた一般化と古典的ネットワークのモジュラリティを組み合わせた2つのハイブリダイゼーション手法を提案する。
論文 参考訳(メタデータ) (2024-02-25T16:57:51Z) - A Comparative Analysis of Hybrid-Quantum Classical Neural Networks [5.247197295547863]
本稿では、画像分類のための異なるハイブリッド量子古典機械学習アルゴリズム間の広範な比較分析を行う。
この精度に基づくハイブリッドモデルの性能比較により、回路の量子層数と量子ビット数の変化との相関関係におけるハイブリッド量子古典収束の理解が得られる。
論文 参考訳(メタデータ) (2024-02-16T09:59:44Z) - Enhancing the expressivity of quantum neural networks with residual
connections [0.0]
量子残差ニューラルネットワーク(QResNets)を実装する量子回路に基づくアルゴリズムを提案する。
我々の研究は、古典的残留ニューラルネットワークの完全な量子的実装の基礎を築いた。
論文 参考訳(メタデータ) (2024-01-29T04:00:51Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
我々は、ニューラルネットワークの量子対する最も有望な候補として登場した変分量子回路(VQC)に注目した。
有望な結果を示す一方で、バレン高原、重みの周期性、アーキテクチャの選択など、さまざまな問題のために、VQCのトレーニングは困難である。
本稿では,VQCの重みとアーキテクチャの両方を最適化するために,自然進化にインスパイアされた勾配のないアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-04-14T08:03:20Z) - DQC$^2$O: Distributed Quantum Computing for Collaborative Optimization
in Future Networks [54.03701670739067]
本稿では、将来のネットワークにおける最適化タスクを解決するために、量子コンピュータと量子チャネルを管理するための適応型分散量子コンピューティング手法を提案する。
提案手法に基づいて,スマートグリッド管理やIoT連携,UAV軌道計画など,今後のネットワークにおける協調最適化の潜在的な応用について論じる。
論文 参考訳(メタデータ) (2022-09-16T02:44:52Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
テンソルネットワーク(TN)アルゴリズムは、パラメタライズド量子回路(PQC)にマッピングできる
本稿では,現実的な量子回路を用いてTN状態を近似する新しいプロトコルを提案する。
その結果、量子回路の逐次的な成長と最適化を含む1つの特定のプロトコルが、他の全ての手法より優れていることが明らかとなった。
論文 参考訳(メタデータ) (2022-09-01T17:08:41Z) - Feasible Architecture for Quantum Fully Convolutional Networks [4.849886707973093]
本稿では,ノイズの多い中間規模量子デバイス上で動作可能な,実現可能な純粋量子アーキテクチャを提案する。
本研究は、純粋量子完全畳み込みネットワークのトレーニングを成功させ、それをハイブリッドソリューションと比較することで利点を論じるものである。
論文 参考訳(メタデータ) (2021-10-05T01:06:54Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。