Adversarial attacks for mixtures of classifiers
- URL: http://arxiv.org/abs/2307.10788v1
- Date: Thu, 20 Jul 2023 11:38:55 GMT
- Title: Adversarial attacks for mixtures of classifiers
- Authors: Lucas Gnecco Heredia, Benjamin Negrevergne, Yann Chevaleyre
- Abstract summary: We discuss the problem of attacking a mixture in a principled way.
We introduce two desirable properties of attacks based on a geometrical analysis of the problem.
We then show that existing attacks do not meet both of these properties.
- Score: 7.612259653177203
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Mixtures of classifiers (a.k.a. randomized ensembles) have been proposed as a
way to improve robustness against adversarial attacks. However, it has been
shown that existing attacks are not well suited for this kind of classifiers.
In this paper, we discuss the problem of attacking a mixture in a principled
way and introduce two desirable properties of attacks based on a geometrical
analysis of the problem (effectiveness and maximality). We then show that
existing attacks do not meet both of these properties. Finally, we introduce a
new attack called lattice climber attack with theoretical guarantees on the
binary linear setting, and we demonstrate its performance by conducting
experiments on synthetic and real datasets.
Related papers
- Meta Invariance Defense Towards Generalizable Robustness to Unknown Adversarial Attacks [62.036798488144306]
Current defense mainly focuses on the known attacks, but the adversarial robustness to the unknown attacks is seriously overlooked.
We propose an attack-agnostic defense method named Meta Invariance Defense (MID)
We show that MID simultaneously achieves robustness to the imperceptible adversarial perturbations in high-level image classification and attack-suppression in low-level robust image regeneration.
arXiv Detail & Related papers (2024-04-04T10:10:38Z) - Generalization Properties of Adversarial Training for $\ell_0$-Bounded
Adversarial Attacks [47.22918498465056]
In this paper, we aim to theoretically characterize the performance of adversarial training for an important class of neural networks.
Deriving a generalization in this setting has two main challenges.
arXiv Detail & Related papers (2024-02-05T22:57:33Z) - Adversarial Attacks Neutralization via Data Set Randomization [3.655021726150369]
Adversarial attacks on deep learning models pose a serious threat to their reliability and security.
We propose a new defense mechanism that is rooted on hyperspace projection.
We show that our solution increases the robustness of deep learning models against adversarial attacks.
arXiv Detail & Related papers (2023-06-21T10:17:55Z) - Adversarial Attacks are a Surprisingly Strong Baseline for Poisoning
Few-Shot Meta-Learners [28.468089304148453]
We attack amortized meta-learners, which allows us to craft colluding sets of inputs that fool the system's learning algorithm.
We show that in a white box setting, these attacks are very successful and can cause the target model's predictions to become worse than chance.
We explore two hypotheses to explain this: 'overfitting' by the attack, and mismatch between the model on which the attack is generated and that to which the attack is transferred.
arXiv Detail & Related papers (2022-11-23T14:55:44Z) - Improving Adversarial Robustness to Sensitivity and Invariance Attacks
with Deep Metric Learning [80.21709045433096]
A standard method in adversarial robustness assumes a framework to defend against samples crafted by minimally perturbing a sample.
We use metric learning to frame adversarial regularization as an optimal transport problem.
Our preliminary results indicate that regularizing over invariant perturbations in our framework improves both invariant and sensitivity defense.
arXiv Detail & Related papers (2022-11-04T13:54:02Z) - Towards Compositional Adversarial Robustness: Generalizing Adversarial
Training to Composite Semantic Perturbations [70.05004034081377]
We first propose a novel method for generating composite adversarial examples.
Our method can find the optimal attack composition by utilizing component-wise projected gradient descent.
We then propose generalized adversarial training (GAT) to extend model robustness from $ell_p$-ball to composite semantic perturbations.
arXiv Detail & Related papers (2022-02-09T02:41:56Z) - PARL: Enhancing Diversity of Ensemble Networks to Resist Adversarial
Attacks via Pairwise Adversarially Robust Loss Function [13.417003144007156]
adversarial attacks tend to rely on the principle of transferability.
Ensemble methods against adversarial attacks demonstrate that an adversarial example is less likely to mislead multiple classifiers.
Recent ensemble methods have either been shown to be vulnerable to stronger adversaries or shown to lack an end-to-end evaluation.
arXiv Detail & Related papers (2021-12-09T14:26:13Z) - Stochastic Variance Reduced Ensemble Adversarial Attack for Boosting the
Adversarial Transferability [20.255708227671573]
Black-box adversarial attacks can be transferred from one model to another.
In this work, we propose a novel ensemble attack method called the variance reduced ensemble attack.
Empirical results on the standard ImageNet demonstrate that the proposed method could boost the adversarial transferability and outperforms existing ensemble attacks significantly.
arXiv Detail & Related papers (2021-11-21T06:33:27Z) - Towards A Conceptually Simple Defensive Approach for Few-shot
classifiers Against Adversarial Support Samples [107.38834819682315]
We study a conceptually simple approach to defend few-shot classifiers against adversarial attacks.
We propose a simple attack-agnostic detection method, using the concept of self-similarity and filtering.
Our evaluation on the miniImagenet (MI) and CUB datasets exhibit good attack detection performance.
arXiv Detail & Related papers (2021-10-24T05:46:03Z) - Learning from History for Byzantine Robust Optimization [52.68913869776858]
Byzantine robustness has received significant attention recently given its importance for distributed learning.
We show that most existing robust aggregation rules may not converge even in the absence of any Byzantine attackers.
arXiv Detail & Related papers (2020-12-18T16:22:32Z) - Adversarial Example Games [51.92698856933169]
Adrial Example Games (AEG) is a framework that models the crafting of adversarial examples.
AEG provides a new way to design adversarial examples by adversarially training a generator and aversa from a given hypothesis class.
We demonstrate the efficacy of AEG on the MNIST and CIFAR-10 datasets.
arXiv Detail & Related papers (2020-07-01T19:47:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.