Behavioral Analysis of Vision-and-Language Navigation Agents
- URL: http://arxiv.org/abs/2307.10790v1
- Date: Thu, 20 Jul 2023 11:42:24 GMT
- Title: Behavioral Analysis of Vision-and-Language Navigation Agents
- Authors: Zijiao Yang, Arjun Majumdar, Stefan Lee
- Abstract summary: Vision-and-Language Navigation (VLN) agents must be able to ground instructions to actions based on surroundings.
We develop a methodology to study agent behavior on a skill-specific basis.
- Score: 21.31684388423088
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To be successful, Vision-and-Language Navigation (VLN) agents must be able to
ground instructions to actions based on their surroundings. In this work, we
develop a methodology to study agent behavior on a skill-specific basis --
examining how well existing agents ground instructions about stopping, turning,
and moving towards specified objects or rooms. Our approach is based on
generating skill-specific interventions and measuring changes in agent
predictions. We present a detailed case study analyzing the behavior of a
recent agent and then compare multiple agents in terms of skill-specific
competency scores. This analysis suggests that biases from training have
lasting effects on agent behavior and that existing models are able to ground
simple referring expressions. Our comparisons between models show that
skill-specific scores correlate with improvements in overall VLN task
performance.
Related papers
- On Multi-Agent Inverse Reinforcement Learning [8.284137254112848]
We extend the Inverse Reinforcement Learning (IRL) framework to the multi-agent setting, assuming to observe agents who are following Nash Equilibrium (NE) policies.
We provide an explicit characterization of the feasible reward set and analyze how errors in estimating the transition dynamics and expert behavior impact the recovered rewards.
arXiv Detail & Related papers (2024-11-22T16:31:36Z) - Explanatory Model Monitoring to Understand the Effects of Feature Shifts on Performance [61.06245197347139]
We propose a novel approach to explain the behavior of a black-box model under feature shifts.
We refer to our method that combines concepts from Optimal Transport and Shapley Values as Explanatory Performance Estimation.
arXiv Detail & Related papers (2024-08-24T18:28:19Z) - Watch Every Step! LLM Agent Learning via Iterative Step-Level Process Refinement [50.481380478458945]
Iterative step-level Process Refinement (IPR) framework provides detailed step-by-step guidance to enhance agent training.
Our experiments on three complex agent tasks demonstrate that our framework outperforms a variety of strong baselines.
arXiv Detail & Related papers (2024-06-17T03:29:13Z) - What Makes Pre-Trained Visual Representations Successful for Robust
Manipulation? [57.92924256181857]
We find that visual representations designed for manipulation and control tasks do not necessarily generalize under subtle changes in lighting and scene texture.
We find that emergent segmentation ability is a strong predictor of out-of-distribution generalization among ViT models.
arXiv Detail & Related papers (2023-11-03T18:09:08Z) - Task Formulation Matters When Learning Continually: A Case Study in
Visual Question Answering [58.82325933356066]
Continual learning aims to train a model incrementally on a sequence of tasks without forgetting previous knowledge.
We present a detailed study of how different settings affect performance for Visual Question Answering.
arXiv Detail & Related papers (2022-09-30T19:12:58Z) - Beyond Rewards: a Hierarchical Perspective on Offline Multiagent
Behavioral Analysis [14.656957226255628]
We introduce a model-agnostic method for discovery of behavior clusters in multiagent domains.
Our framework makes no assumption about agents' underlying learning algorithms, does not require access to their latent states or models, and can be trained using entirely offline observational data.
arXiv Detail & Related papers (2022-06-17T23:07:33Z) - Differential Assessment of Black-Box AI Agents [29.98710357871698]
We propose a novel approach to differentially assess black-box AI agents that have drifted from their previously known models.
We leverage sparse observations of the drifted agent's current behavior and knowledge of its initial model to generate an active querying policy.
Empirical evaluation shows that our approach is much more efficient than re-learning the agent model from scratch.
arXiv Detail & Related papers (2022-03-24T17:48:58Z) - Explaining Reinforcement Learning Policies through Counterfactual
Trajectories [147.7246109100945]
A human developer must validate that an RL agent will perform well at test-time.
Our method conveys how the agent performs under distribution shifts by showing the agent's behavior across a wider trajectory distribution.
In a user study, we demonstrate that our method enables users to score better than baseline methods on one of two agent validation tasks.
arXiv Detail & Related papers (2022-01-29T00:52:37Z) - Multi-Agent Imitation Learning with Copulas [102.27052968901894]
Multi-agent imitation learning aims to train multiple agents to perform tasks from demonstrations by learning a mapping between observations and actions.
In this paper, we propose to use copula, a powerful statistical tool for capturing dependence among random variables, to explicitly model the correlation and coordination in multi-agent systems.
Our proposed model is able to separately learn marginals that capture the local behavioral patterns of each individual agent, as well as a copula function that solely and fully captures the dependence structure among agents.
arXiv Detail & Related papers (2021-07-10T03:49:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.