On Multi-Agent Inverse Reinforcement Learning
- URL: http://arxiv.org/abs/2411.15046v1
- Date: Fri, 22 Nov 2024 16:31:36 GMT
- Title: On Multi-Agent Inverse Reinforcement Learning
- Authors: Till Freihaut, Giorgia Ramponi,
- Abstract summary: We extend the Inverse Reinforcement Learning (IRL) framework to the multi-agent setting, assuming to observe agents who are following Nash Equilibrium (NE) policies.
We provide an explicit characterization of the feasible reward set and analyze how errors in estimating the transition dynamics and expert behavior impact the recovered rewards.
- Score: 8.284137254112848
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In multi-agent systems, the agent behavior is highly influenced by its utility function, as these utilities shape both individual goals as well as interactions with the other agents. Inverse Reinforcement Learning (IRL) is a well-established approach to inferring the utility function by observing an expert behavior within a given environment. In this paper, we extend the IRL framework to the multi-agent setting, assuming to observe agents who are following Nash Equilibrium (NE) policies. We theoretically investigate the set of utilities that explain the behavior of NE experts. Specifically, we provide an explicit characterization of the feasible reward set and analyze how errors in estimating the transition dynamics and expert behavior impact the recovered rewards. Building on these findings, we provide the first sample complexity analysis for the multi-agent IRL problem. Finally, we provide a numerical evaluation of our theoretical results.
Related papers
- From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
We introduce StepAgent, which utilizes step-wise reward to optimize the agent's reinforcement learning process.
We propose implicit-reward and inverse reinforcement learning techniques to facilitate agent reflection and policy adjustment.
arXiv Detail & Related papers (2024-11-06T10:35:11Z) - Watch Every Step! LLM Agent Learning via Iterative Step-Level Process Refinement [50.481380478458945]
Iterative step-level Process Refinement (IPR) framework provides detailed step-by-step guidance to enhance agent training.
Our experiments on three complex agent tasks demonstrate that our framework outperforms a variety of strong baselines.
arXiv Detail & Related papers (2024-06-17T03:29:13Z) - Linear Convergence of Independent Natural Policy Gradient in Games with Entropy Regularization [12.612009339150504]
This work focuses on the entropy-regularized independent natural policy gradient (NPG) algorithm in multi-agent reinforcement learning.
We show that, under sufficient entropy regularization, the dynamics of this system converge at a linear rate to the quantal response equilibrium (QRE)
arXiv Detail & Related papers (2024-05-04T22:48:53Z) - AgentBoard: An Analytical Evaluation Board of Multi-turn LLM Agents [74.16170899755281]
We introduce AgentBoard, a pioneering comprehensive benchmark and accompanied open-source evaluation framework tailored to analytical evaluation of LLM agents.
AgentBoard offers a fine-grained progress rate metric that captures incremental advancements as well as a comprehensive evaluation toolkit.
This not only sheds light on the capabilities and limitations of LLM agents but also propels the interpretability of their performance to the forefront.
arXiv Detail & Related papers (2024-01-24T01:51:00Z) - Inverse Reinforcement Learning with Sub-optimal Experts [56.553106680769474]
We study the theoretical properties of the class of reward functions that are compatible with a given set of experts.
Our results show that the presence of multiple sub-optimal experts can significantly shrink the set of compatible rewards.
We analyze a uniform sampling algorithm that results in being minimax optimal whenever the sub-optimal experts' performance level is sufficiently close to the one of the optimal agent.
arXiv Detail & Related papers (2024-01-08T12:39:25Z) - DCIR: Dynamic Consistency Intrinsic Reward for Multi-Agent Reinforcement
Learning [84.22561239481901]
We propose a new approach that enables agents to learn whether their behaviors should be consistent with that of other agents.
We evaluate DCIR in multiple environments including Multi-agent Particle, Google Research Football and StarCraft II Micromanagement.
arXiv Detail & Related papers (2023-12-10T06:03:57Z) - Large Language Model-Powered Smart Contract Vulnerability Detection: New
Perspectives [8.524720028421447]
This paper provides a systematic analysis of the opportunities, challenges, and potential solutions of harnessing Large Language Models (LLMs) such as GPT-4.
generating more answers with higher randomness largely boosts the likelihood of producing a correct answer but inevitably leads to a higher number of false positives.
We propose an adversarial framework dubbed GPTLens that breaks the conventional one-stage detection into two synergistic stages $-$ generation and discrimination.
arXiv Detail & Related papers (2023-10-02T12:37:23Z) - Behavioral Analysis of Vision-and-Language Navigation Agents [21.31684388423088]
Vision-and-Language Navigation (VLN) agents must be able to ground instructions to actions based on surroundings.
We develop a methodology to study agent behavior on a skill-specific basis.
arXiv Detail & Related papers (2023-07-20T11:42:24Z) - On the Complexity of Multi-Agent Decision Making: From Learning in Games
to Partial Monitoring [105.13668993076801]
A central problem in the theory of multi-agent reinforcement learning (MARL) is to understand what structural conditions and algorithmic principles lead to sample-efficient learning guarantees.
We study this question in a general framework for interactive decision making with multiple agents.
We show that characterizing the statistical complexity for multi-agent decision making is equivalent to characterizing the statistical complexity of single-agent decision making.
arXiv Detail & Related papers (2023-05-01T06:46:22Z) - A Unifying Perspective on Multi-Calibration: Game Dynamics for
Multi-Objective Learning [63.20009081099896]
We provide a unifying framework for the design and analysis of multicalibrated predictors.
We exploit connections to game dynamics to achieve state-of-the-art guarantees for a diverse set of multicalibration learning problems.
arXiv Detail & Related papers (2023-02-21T18:24:17Z) - Effects of Spectral Normalization in Multi-agent Reinforcement Learning [7.064383217512461]
We show that regularising the critic with spectral normalization (SN) enables it to learn more robustly.
Our experiments show that the regularised critic is quickly able to learn from the sparse rewarding experience.
arXiv Detail & Related papers (2022-12-10T16:26:30Z) - Credit-cognisant reinforcement learning for multi-agent cooperation [0.0]
We introduce the concept of credit-cognisant rewards, which allows an agent to perceive the effect its actions had on the environment as well as on its co-agents.
We show that by manipulating these experiences and constructing the reward contained within them to include the rewards received by all the agents within the same action sequence, we are able to improve significantly on the performance of independent deep Q-learning.
arXiv Detail & Related papers (2022-11-18T09:00:25Z) - Beyond Rewards: a Hierarchical Perspective on Offline Multiagent
Behavioral Analysis [14.656957226255628]
We introduce a model-agnostic method for discovery of behavior clusters in multiagent domains.
Our framework makes no assumption about agents' underlying learning algorithms, does not require access to their latent states or models, and can be trained using entirely offline observational data.
arXiv Detail & Related papers (2022-06-17T23:07:33Z) - What is Going on Inside Recurrent Meta Reinforcement Learning Agents? [63.58053355357644]
Recurrent meta reinforcement learning (meta-RL) agents are agents that employ a recurrent neural network (RNN) for the purpose of "learning a learning algorithm"
We shed light on the internal working mechanisms of these agents by reformulating the meta-RL problem using the Partially Observable Markov Decision Process (POMDP) framework.
arXiv Detail & Related papers (2021-04-29T20:34:39Z) - Efficient Empowerment Estimation for Unsupervised Stabilization [75.32013242448151]
empowerment principle enables unsupervised stabilization of dynamical systems at upright positions.
We propose an alternative solution based on a trainable representation of a dynamical system as a Gaussian channel.
We show that our method has a lower sample complexity, is more stable in training, possesses the essential properties of the empowerment function, and allows estimation of empowerment from images.
arXiv Detail & Related papers (2020-07-14T21:10:16Z) - Calibration of Shared Equilibria in General Sum Partially Observable
Markov Games [15.572157454411533]
We consider a general sum partially observable Markov game where agents of different types share a single policy network.
This paper aims at i) formally understanding equilibria reached by such agents, and ii) matching emergent phenomena of such equilibria to real-world targets.
arXiv Detail & Related papers (2020-06-23T15:14:20Z) - Randomized Entity-wise Factorization for Multi-Agent Reinforcement
Learning [59.62721526353915]
Multi-agent settings in the real world often involve tasks with varying types and quantities of agents and non-agent entities.
Our method aims to leverage these commonalities by asking the question: What is the expected utility of each agent when only considering a randomly selected sub-group of its observed entities?''
arXiv Detail & Related papers (2020-06-07T18:28:41Z) - Maximizing Information Gain in Partially Observable Environments via
Prediction Reward [64.24528565312463]
This paper tackles the challenge of using belief-based rewards for a deep RL agent.
We derive the exact error between negative entropy and the expected prediction reward.
This insight provides theoretical motivation for several fields using prediction rewards.
arXiv Detail & Related papers (2020-05-11T08:13:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.