論文の概要: BlendFace: Re-designing Identity Encoders for Face-Swapping
- arxiv url: http://arxiv.org/abs/2307.10854v1
- Date: Thu, 20 Jul 2023 13:17:30 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-21 13:00:56.919049
- Title: BlendFace: Re-designing Identity Encoders for Face-Swapping
- Title(参考訳): BlendFace: フェイススワッピングのためのアイデンティティエンコーダの再設計
- Authors: Kaede Shiohara, Xingchao Yang, Takafumi Taketomi
- Abstract要約: BlendFaceはフェイススワッピングのための新しいアイデンティティエンコーダである。
アイデンティティ機能をジェネレータに切り離し、ID損失関数としてジェネレータを適切に誘導する。
大規模な実験により、BlendFaceはフェイススワッピングモデルにおけるID-属性のゆがみを改善することが示されている。
- 参考スコア(独自算出の注目度): 2.320417845168326
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The great advancements of generative adversarial networks and face
recognition models in computer vision have made it possible to swap identities
on images from single sources. Although a lot of studies seems to have proposed
almost satisfactory solutions, we notice previous methods still suffer from an
identity-attribute entanglement that causes undesired attributes swapping
because widely used identity encoders, eg, ArcFace, have some crucial attribute
biases owing to their pretraining on face recognition tasks. To address this
issue, we design BlendFace, a novel identity encoder for face-swapping. The key
idea behind BlendFace is training face recognition models on blended images
whose attributes are replaced with those of another mitigates inter-personal
biases such as hairsyles. BlendFace feeds disentangled identity features into
generators and guides generators properly as an identity loss function.
Extensive experiments demonstrate that BlendFace improves the
identity-attribute disentanglement in face-swapping models, maintaining a
comparable quantitative performance to previous methods.
- Abstract(参考訳): コンピュータビジョンにおける生成的敵ネットワークと顔認識モデルの大きな進歩により、単一のソースの画像のアイデンティティを交換できるようになった。
多くの研究でほぼ満足な解が提案されたように思われるが、広く使われているアイデンティティエンコーダであるeg、ArcFaceは、顔認識タスクの事前訓練によっていくつかの重要な属性バイアスを持つため、いまだに不要な属性スワッピングを引き起こすアイデンティティ属性エンタングルメントに悩まされている。
この問題に対処するために、顔スワッピングのための新しいIDエンコーダであるBlendFaceを設計する。
blendfaceの背景にある重要なアイデアは、ヘアセイルのような対人バイアスを緩和する別のイメージに置き換えられたブレンドイメージで顔認識モデルをトレーニングすることだ。
BlendFaceは混乱したID機能をジェネレータに供給し、ID損失関数としてジェネレータを適切に誘導する。
大規模な実験により、BlendFaceはフェイススワッピングモデルにおけるID-属性の不整合を改善し、従来の方法と同等の定量的性能を維持することが示されている。
関連論文リスト
- FaceMe: Robust Blind Face Restoration with Personal Identification [27.295878867436688]
拡散モデルに基づく顔復元手法FaceMeを提案する。
1枚または数枚の参照画像が与えられた場合、アイデンティティ関連の特徴を抽出するためにアイデンティティエンコーダを使用し、高品質な顔画像の復元において拡散モデルを導出するためのプロンプトとして機能する。
実験結果から,FaceMeは顔の良質な画像の復元が可能であり,顔認証の整合性を保ち,優れた性能とロバスト性を実現していることがわかった。
論文 参考訳(メタデータ) (2025-01-09T11:52:54Z) - iFADIT: Invertible Face Anonymization via Disentangled Identity Transform [51.123936665445356]
顔の匿名化は、個人のプライバシーを保護するために顔の視覚的アイデンティティを隠すことを目的としている。
Invertible Face Anonymization の頭字語 iFADIT を Disentangled Identity Transform を用いて提案する。
論文 参考訳(メタデータ) (2025-01-08T10:08:09Z) - FaceTracer: Unveiling Source Identities from Swapped Face Images and Videos for Fraud Prevention [68.07489215110894]
FaceTracerは、元人物の身元を、交換された顔画像やビデオから追跡するように設計されたフレームワークである。
実験では、FaceTracerは元の人物をスワップされたコンテンツで特定し、不正行為に関わる悪意あるアクターの追跡を可能にした。
論文 参考訳(メタデータ) (2024-12-11T04:00:17Z) - OSDFace: One-Step Diffusion Model for Face Restoration [72.5045389847792]
拡散モデルは、顔の修復において顕著な性能を示した。
顔復元のための新しいワンステップ拡散モデルOSDFaceを提案する。
その結果,OSDFaceは現状のSOTA(State-of-the-art)手法を視覚的品質と定量的指標の両方で上回っていることがわかった。
論文 参考訳(メタデータ) (2024-11-26T07:07:48Z) - G2Face: High-Fidelity Reversible Face Anonymization via Generative and Geometric Priors [71.69161292330504]
可逆顔匿名化(Reversible face anonymization)は、顔画像の繊細なアイデンティティ情報を、合成された代替品に置き換えようとしている。
本稿では,Gtextsuperscript2Faceを提案する。
提案手法は,高データの有効性を保ちながら,顔の匿名化と回復において既存の最先端技術よりも優れる。
論文 参考訳(メタデータ) (2024-08-18T12:36:47Z) - High-Fidelity Face Swapping with Style Blending [16.024260677867076]
高忠実な顔交換のための革新的なエンドツーエンドフレームワークを提案する。
まず、スタイルGANベースの顔属性エンコーダを導入し、顔から重要な特徴を抽出し、潜在スタイルコードに変換する。
第二に、ターゲットからターゲットへFace IDを効果的に転送するアテンションベースのスタイルブレンディングモジュールを導入する。
論文 参考訳(メタデータ) (2023-12-17T23:22:37Z) - ReliableSwap: Boosting General Face Swapping Via Reliable Supervision [9.725105108879717]
本稿では,訓練中に対象とソースの同一性が異なる場合のイメージレベルのガイダンスとして機能する,サイクルトリプレットと呼ばれる信頼性の高い監視機能を構築することを提案する。
具体的には,顔の再現とブレンディング技術を用いて,前もって実際の画像からスワップされた顔の合成を行う。
フェーススワッピングフレームワークであるReliableSwapは、既存のフェースワップネットワークの性能を無視できるオーバーヘッドで向上させることができる。
論文 参考訳(メタデータ) (2023-06-08T17:01:14Z) - Face Transformer: Towards High Fidelity and Accurate Face Swapping [54.737909435708936]
Face swappingは、ソース顔の同一性とターゲット顔の属性を融合させるスワップ画像を生成することを目的としている。
本稿では,顔の同一性と対象属性を同時に正確に保存できる新しい顔交換ネットワークであるFace Transformerを提案する。
論文 参考訳(メタデータ) (2023-04-05T15:51:44Z) - Learning Disentangled Representation for One-shot Progressive Face Swapping [92.09538942684539]
ジェネレーティブ・アドバーサリアル・ネットワークに基づくワンショット・フェイススワップのためのシンプルで効率的なFaceSwapperを提案する。
提案手法は,不整合表現モジュールと意味誘導融合モジュールから構成される。
本手法は,トレーニングサンプルの少ないベンチマークデータセットに対して,最先端の結果を得る。
論文 参考訳(メタデータ) (2022-03-24T11:19:04Z) - A Systematical Solution for Face De-identification [6.244117712209321]
異なるタスクにおいて、人々は顔の特定(De-ID)に様々な要件を持つ
本稿では,これらのDe-ID操作に適合する系統的解を提案する。
本手法は,様々な方法で顔データを柔軟に識別し,画像の画質が向上する。
論文 参考訳(メタデータ) (2021-07-19T02:02:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。