論文の概要: BlendFace: Re-designing Identity Encoders for Face-Swapping
- arxiv url: http://arxiv.org/abs/2307.10854v1
- Date: Thu, 20 Jul 2023 13:17:30 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-21 13:00:56.919049
- Title: BlendFace: Re-designing Identity Encoders for Face-Swapping
- Title(参考訳): BlendFace: フェイススワッピングのためのアイデンティティエンコーダの再設計
- Authors: Kaede Shiohara, Xingchao Yang, Takafumi Taketomi
- Abstract要約: BlendFaceはフェイススワッピングのための新しいアイデンティティエンコーダである。
アイデンティティ機能をジェネレータに切り離し、ID損失関数としてジェネレータを適切に誘導する。
大規模な実験により、BlendFaceはフェイススワッピングモデルにおけるID-属性のゆがみを改善することが示されている。
- 参考スコア(独自算出の注目度): 2.320417845168326
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The great advancements of generative adversarial networks and face
recognition models in computer vision have made it possible to swap identities
on images from single sources. Although a lot of studies seems to have proposed
almost satisfactory solutions, we notice previous methods still suffer from an
identity-attribute entanglement that causes undesired attributes swapping
because widely used identity encoders, eg, ArcFace, have some crucial attribute
biases owing to their pretraining on face recognition tasks. To address this
issue, we design BlendFace, a novel identity encoder for face-swapping. The key
idea behind BlendFace is training face recognition models on blended images
whose attributes are replaced with those of another mitigates inter-personal
biases such as hairsyles. BlendFace feeds disentangled identity features into
generators and guides generators properly as an identity loss function.
Extensive experiments demonstrate that BlendFace improves the
identity-attribute disentanglement in face-swapping models, maintaining a
comparable quantitative performance to previous methods.
- Abstract(参考訳): コンピュータビジョンにおける生成的敵ネットワークと顔認識モデルの大きな進歩により、単一のソースの画像のアイデンティティを交換できるようになった。
多くの研究でほぼ満足な解が提案されたように思われるが、広く使われているアイデンティティエンコーダであるeg、ArcFaceは、顔認識タスクの事前訓練によっていくつかの重要な属性バイアスを持つため、いまだに不要な属性スワッピングを引き起こすアイデンティティ属性エンタングルメントに悩まされている。
この問題に対処するために、顔スワッピングのための新しいIDエンコーダであるBlendFaceを設計する。
blendfaceの背景にある重要なアイデアは、ヘアセイルのような対人バイアスを緩和する別のイメージに置き換えられたブレンドイメージで顔認識モデルをトレーニングすることだ。
BlendFaceは混乱したID機能をジェネレータに供給し、ID損失関数としてジェネレータを適切に誘導する。
大規模な実験により、BlendFaceはフェイススワッピングモデルにおけるID-属性の不整合を改善し、従来の方法と同等の定量的性能を維持することが示されている。
関連論文リスト
- StableIdentity: Inserting Anybody into Anywhere at First Sight [57.99693188913382]
一つの顔画像で同一性に一貫性のある再テクスチャ化を可能にするStableIdentityを提案する。
私たちは、1つの画像から学んだアイデンティティを直接、微調整なしでビデオ/3D生成に注入する最初の人です。
論文 参考訳(メタデータ) (2024-01-29T09:06:15Z) - High-Fidelity Face Swapping with Style Blending [16.024260677867076]
高忠実な顔交換のための革新的なエンドツーエンドフレームワークを提案する。
まず、スタイルGANベースの顔属性エンコーダを導入し、顔から重要な特徴を抽出し、潜在スタイルコードに変換する。
第二に、ターゲットからターゲットへFace IDを効果的に転送するアテンションベースのスタイルブレンディングモジュールを導入する。
論文 参考訳(メタデータ) (2023-12-17T23:22:37Z) - Seeing through the Mask: Multi-task Generative Mask Decoupling Face
Recognition [47.248075664420874]
現在の一般的な顔認識システムは、隠蔽シーンに遭遇する際の重大な性能劣化に悩まされている。
本稿では,これら2つのタスクを協調的に扱うために,マルチタスクのgEnerative mask dEcoupling Face Recognition (MEER) ネットワークを提案する。
まず,マスクと識別情報を分離する新しいマスクデカップリングモジュールを提案する。
論文 参考訳(メタデータ) (2023-11-20T03:23:03Z) - ReliableSwap: Boosting General Face Swapping Via Reliable Supervision [9.725105108879717]
本稿では,訓練中に対象とソースの同一性が異なる場合のイメージレベルのガイダンスとして機能する,サイクルトリプレットと呼ばれる信頼性の高い監視機能を構築することを提案する。
具体的には,顔の再現とブレンディング技術を用いて,前もって実際の画像からスワップされた顔の合成を行う。
フェーススワッピングフレームワークであるReliableSwapは、既存のフェースワップネットワークの性能を無視できるオーバーヘッドで向上させることができる。
論文 参考訳(メタデータ) (2023-06-08T17:01:14Z) - Face Transformer: Towards High Fidelity and Accurate Face Swapping [54.737909435708936]
Face swappingは、ソース顔の同一性とターゲット顔の属性を融合させるスワップ画像を生成することを目的としている。
本稿では,顔の同一性と対象属性を同時に正確に保存できる新しい顔交換ネットワークであるFace Transformerを提案する。
論文 参考訳(メタデータ) (2023-04-05T15:51:44Z) - FaceMAE: Privacy-Preserving Face Recognition via Masked Autoencoders [81.21440457805932]
顔のプライバシと認識性能を同時に考慮する新しいフレームワークFaceMAEを提案する。
ランダムにマスクされた顔画像は、FaceMAEの再構築モジュールのトレーニングに使用される。
また、いくつかの公開顔データセット上で十分なプライバシー保護顔認証を行う。
論文 参考訳(メタデータ) (2022-05-23T07:19:42Z) - Learning Disentangled Representation for One-shot Progressive Face
Swapping [65.98684203654908]
ジェネレーティブ・アドバーサリアル・ネットワークに基づくワンショット・フェイススワップのためのシンプルで効率的なFaceSwapperを提案する。
提案手法は,不整合表現モジュールと意味誘導融合モジュールから構成される。
その結果,本手法は,トレーニングサンプルの少ないベンチマークで最先端の結果が得られることがわかった。
論文 参考訳(メタデータ) (2022-03-24T11:19:04Z) - A Systematical Solution for Face De-identification [6.244117712209321]
異なるタスクにおいて、人々は顔の特定(De-ID)に様々な要件を持つ
本稿では,これらのDe-ID操作に適合する系統的解を提案する。
本手法は,様々な方法で顔データを柔軟に識別し,画像の画質が向上する。
論文 参考訳(メタデータ) (2021-07-19T02:02:51Z) - HifiFace: 3D Shape and Semantic Prior Guided High Fidelity Face Swapping [116.1022638063613]
本研究では,光源面の顔形状を保存し,写真リアルな結果を生成できるHifiFaceを提案する。
本稿では,エンコーダとデコーダの組み合わせを最適化するSemantic Facial Fusionモジュールを提案する。
論文 参考訳(メタデータ) (2021-06-18T07:39:09Z) - DotFAN: A Domain-transferred Face Augmentation Network for Pose and
Illumination Invariant Face Recognition [94.96686189033869]
本稿では,3次元モデルを用いたドメイン転送型顔強調ネットワーク(DotFAN)を提案する。
DotFANは、他のドメインから収集された既存のリッチフェイスデータセットから抽出された知識に基づいて、入力顔の一連の変種を生成することができる。
実験によると、DotFANは、クラス内の多様性を改善するために、小さな顔データセットを増やすのに有益である。
論文 参考訳(メタデータ) (2020-02-23T08:16:34Z) - FaceShifter: Towards High Fidelity And Occlusion Aware Face Swapping [43.236261887752065]
本研究では,顔交換のための2段階フレームワークであるFaceShifterを提案する。
最初の段階では、ターゲット属性を徹底的かつ適応的に利用して、スワップされた顔を高忠実に生成する。
難解な顔合成に対処するために、HEAR-Net(Huristic Err Accnowledging Refinement Network)と呼ばれる新しいヒューリスティック・エラー認識ネットワーク(Heuristic Err Acknowledging Refinement Network)の第2ステージを付加する。
論文 参考訳(メタデータ) (2019-12-31T17:57:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。