論文の概要: Human Motion Generation: A Survey
- arxiv url: http://arxiv.org/abs/2307.10894v3
- Date: Wed, 15 Nov 2023 06:26:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-16 20:15:51.881959
- Title: Human Motion Generation: A Survey
- Title(参考訳): 人間の運動生成:調査
- Authors: Wentao Zhu, Xiaoxuan Ma, Dongwoo Ro, Hai Ci, Jinlu Zhang, Jiaxin Shi,
Feng Gao, Qi Tian, and Yizhou Wang
- Abstract要約: 人間の動き生成は、自然の人間のポーズシーケンスを生成し、現実世界の応用に大きな可能性を示すことを目的としている。
この分野のほとんどの研究は、テキスト、オーディオ、シーンコンテキストなどの条件信号に基づいて人間の動きを生成することに焦点を当てている。
本稿では,人間の動作生成に関する総合的な文献レビューを紹介する。
- 参考スコア(独自算出の注目度): 67.38982546213371
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human motion generation aims to generate natural human pose sequences and
shows immense potential for real-world applications. Substantial progress has
been made recently in motion data collection technologies and generation
methods, laying the foundation for increasing interest in human motion
generation. Most research within this field focuses on generating human motions
based on conditional signals, such as text, audio, and scene contexts. While
significant advancements have been made in recent years, the task continues to
pose challenges due to the intricate nature of human motion and its implicit
relationship with conditional signals. In this survey, we present a
comprehensive literature review of human motion generation, which, to the best
of our knowledge, is the first of its kind in this field. We begin by
introducing the background of human motion and generative models, followed by
an examination of representative methods for three mainstream sub-tasks:
text-conditioned, audio-conditioned, and scene-conditioned human motion
generation. Additionally, we provide an overview of common datasets and
evaluation metrics. Lastly, we discuss open problems and outline potential
future research directions. We hope that this survey could provide the
community with a comprehensive glimpse of this rapidly evolving field and
inspire novel ideas that address the outstanding challenges.
- Abstract(参考訳): 人間の動き生成は、自然の人間のポーズシーケンスを生成し、現実世界の応用に大きな可能性を示す。
近年,動きデータ収集技術や生成手法が進歩し,人間の動き生成への関心が高まっている。
この分野のほとんどの研究は、テキスト、オーディオ、シーンコンテキストなどの条件信号に基づいて人間の動きを生成することに焦点を当てている。
近年は顕著な進歩を遂げているが、人間の動きの複雑な性質と条件付き信号との暗黙的な関係により、課題が続いている。
本稿では,人間の運動生成に関する総合的な文献レビューを行う。
まず、人間の動作と生成モデルの背景を紹介し、続いて、テキストコンディショニング、オーディオコンディショニング、シーンコンディショニングの3つのメインストリームサブタスクの代表的な手法について検討する。
さらに,共通データセットと評価指標の概要について述べる。
最後に、オープンな問題について議論し、今後の研究の方向性について概説する。
この調査がコミュニティに,この急速に発展する分野の包括的可視化を提供し,優れた課題に対処する新たなアイデアを刺激してくれることを願っています。
関連論文リスト
- A Comprehensive Survey on Human Video Generation: Challenges, Methods, and Insights [8.192172339127657]
ヒューマンビデオ生成は、テキスト、オーディオ、ポーズなどの制御条件が与えられた生成モデルを用いて、2次元の人体ビデオシーケンスを合成することを目的としている。
近年の世代モデルの発展は、この分野への関心の高まりに確かな基盤を築き上げている。
著しい進歩にもかかわらず、キャラクターの整合性、人間の動きの複雑さ、環境との関わりの難しさなど、人間の映像生成の課題は依然として困難なままである。
論文 参考訳(メタデータ) (2024-07-11T12:09:05Z) - LaserHuman: Language-guided Scene-aware Human Motion Generation in Free Environment [27.38638713080283]
我々は,Scene-Text-to-Motion研究に革命をもたらすために設計された,先駆的なデータセットであるLaserHumanを紹介する。
LaserHumanは、本物の人間の動きを3D環境に含めることで際立っている。
本稿では,既存のデータセット上での最先端性能を実現するための多条件拡散モデルを提案する。
論文 参考訳(メタデータ) (2024-03-20T05:11:10Z) - Data Augmentation in Human-Centric Vision [54.97327269866757]
本研究では,人間中心型視覚タスクにおけるデータ拡張手法の包括的分析を行う。
それは、人物のReID、人間のパーシング、人間のポーズ推定、歩行者検出など、幅広い研究領域に展開している。
我々の研究は、データ拡張手法をデータ生成とデータ摂動の2つの主なタイプに分類する。
論文 参考訳(メタデータ) (2024-03-13T16:05:18Z) - Task-Oriented Human-Object Interactions Generation with Implicit Neural
Representations [61.659439423703155]
TOHO: 命令型ニューラル表現を用いたタスク指向型ヒューマンオブジェクトインタラクション生成
本手法は時間座標のみでパラメータ化される連続運動を生成する。
この研究は、一般的なヒューマン・シーンの相互作用シミュレーションに向けて一歩前進する。
論文 参考訳(メタデータ) (2023-03-23T09:31:56Z) - A Comprehensive Review of Data-Driven Co-Speech Gesture Generation [11.948557523215316]
このような共同音声ジェスチャの自動生成は、コンピュータアニメーションにおける長年の問題である。
ジェスチャー生成は最近、人間のジェスチャー動作のデータセットがより大きくなったため、関心が高まっている。
本稿では,特に深層生成モデルに着目した共同音声ジェスチャ生成研究を要約する。
論文 参考訳(メタデータ) (2023-01-13T00:20:05Z) - GIMO: Gaze-Informed Human Motion Prediction in Context [75.52839760700833]
本研究では、高品質なボディポーズシーケンス、シーンスキャン、目視によるエゴ中心のビューを提供する大規模な人体動作データセットを提案する。
私たちのデータ収集は特定のシーンに縛られません。
視線の全可能性を実現するために,視線と運動枝の双方向通信を可能にする新しいネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-04-20T13:17:39Z) - 3D Human Motion Prediction: A Survey [23.605334184939164]
人間の3D動作予測は、与えられたシーケンスから将来のポーズを予測するもので、コンピュータビジョンとマシンインテリジェンスにおいて大きな重要性と課題である。
既存の公開文献からの関連作品のふりかえりと分析を目的として, 人間の3次元動作予測に関する総合的な調査を行った。
論文 参考訳(メタデータ) (2022-03-03T09:46:43Z) - Scene-aware Generative Network for Human Motion Synthesis [125.21079898942347]
シーンと人間の動きの相互作用を考慮した新しい枠組みを提案する。
人間の動きの不確実性を考慮すると、このタスクを生成タスクとして定式化する。
我々は、人間の動きと文脈シーンとの整合性を強制するための識別器を備えた、GANに基づく学習アプローチを導出する。
論文 参考訳(メタデータ) (2021-05-31T09:05:50Z) - Long-term Human Motion Prediction with Scene Context [60.096118270451974]
人間の動きを予測するための新しい3段階フレームワークを提案する。
提案手法はまず,まず複数の人間の動作目標を抽出し,各目標に向けて3次元人間の動作経路を計画し,最後に各経路に続く3次元人間のポーズシーケンスを予測する。
論文 参考訳(メタデータ) (2020-07-07T17:59:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。