論文の概要: The Nature of Intelligence
- arxiv url: http://arxiv.org/abs/2307.11114v3
- Date: Mon, 19 Feb 2024 05:46:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-21 06:23:56.069507
- Title: The Nature of Intelligence
- Title(参考訳): 知能の性質は
- Authors: Barco Jie You
- Abstract要約: 人間とAIの両方で一般的に表現される知性の本質は不明である。
インテリジェンスの性質は,システムエントロピーを最小限に抑える数学的に機能する一連のプロセスであることを示す。
このエッセイは、宇宙と私たちを人間としてより深く理解するための出発点となるべきです。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The human brain is the substrate for human intelligence. By simulating the
human brain, artificial intelligence builds computational models that have
learning capabilities and perform intelligent tasks approaching the human
level. Deep neural networks consist of multiple computation layers to learn
representations of data and improve the state-of-the-art in many recognition
domains. However, the essence of intelligence commonly represented by both
humans and AI is unknown. Here, we show that the nature of intelligence is a
series of mathematically functional processes that minimize system entropy by
establishing functional relationships between datasets over the space and time.
Humans and AI have achieved intelligence by implementing these entropy-reducing
processes in a reinforced manner that consumes energy. With this hypothesis, we
establish mathematical models of language, unconsciousness and consciousness,
predicting the evidence to be found by neuroscience and achieved by AI
engineering. Furthermore, a conclusion is made that the total entropy of the
universe is conservative, and the intelligence counters the spontaneous
processes to decrease entropy by physically or informationally connecting
datasets that originally exist in the universe but are separated across the
space and time. This essay should be a starting point for a deeper
understanding of the universe and us as human beings and for achieving
sophisticated AI models that are tantamount to human intelligence or even
superior. Furthermore, this essay argues that more advanced intelligence than
humans should exist if only it reduces entropy in a more efficient
energy-consuming way.
- Abstract(参考訳): 人間の脳は人間の知能の基盤である。
人間の脳をシミュレートすることで、人工知能は学習能力を持つ計算モデルを構築し、人間のレベルに近づくインテリジェントなタスクを実行する。
ディープニューラルネットワークは、データの表現を学習し、多くの認識領域における最先端を改善するために複数の計算層から構成される。
しかし、人間とAIの両方で一般的に表現される知性の本質は不明である。
ここで、知能の性質は、空間と時間上のデータセット間の機能的関係を確立することによって、システムエントロピーを最小化する一連の数学的機能的プロセスであることを示す。
人間とAIは、エネルギーを消費する強化された方法でこれらのエントロピー還元プロセスを実装することで知性を達成した。
この仮説により、言語、無意識、意識の数学的モデルを確立し、神経科学によって発見され、AI工学によって達成される証拠を予測する。
さらに、宇宙の全体エントロピーは保守的であると結論付け、知性は宇宙にもともと存在するが時間と空間にまたがって分離された物理的または情報的に連結されたデータセットによってエントロピーを減少させる自発的なプロセスに逆らう。
このエッセイは、宇宙と私たちを人間としてより深く理解するための出発点であり、人間の知性にかかわる高度なAIモデルを達成するためのものであるべきです。
さらに、このエッセイは、エントロピーをより効率的なエネルギー消費方法で減らせば、人間よりも高度な知性が存在するべきだと主張している。
関連論文リスト
- Bio-inspired AI: Integrating Biological Complexity into Artificial Intelligence [0.0]
人工知能を作ることの追求は、私たち自身の知性を理解することへの長年の関心を反映している。
最近のAIの進歩は約束を守るが、特異なアプローチはしばしば知性の本質を捉えるのに不足する。
本稿では,生物計算の基本原理が真にインテリジェントなシステムの設計をいかに導くかを検討する。
論文 参考訳(メタデータ) (2024-11-22T02:55:39Z) - AI-as-exploration: Navigating intelligence space [0.05657375260432172]
私は、AIが果たさなければならない、無視されるが中心的な科学的な役割の輪郭を明確に表現します。
AI-as-explorationの基本的な推力は、知性の候補構築ブロックを明らかにするシステムの作成と研究である。
論文 参考訳(メタデータ) (2024-01-15T21:06:20Z) - On a Functional Definition of Intelligence [0.0]
合意されたインテリジェンスの定義がなければ、"このシステムはインテリジェントか?
知性(intelligence)とは、哲学、心理学、認知科学の分野である。
我々は、その知性が実際に達成される方法とは異なる、純粋に機能的でブラックボックスな知性の定義について論じる。
論文 参考訳(メタデータ) (2023-12-15T05:46:49Z) - The Generative AI Paradox: "What It Can Create, It May Not Understand" [81.89252713236746]
生成AIの最近の波は、潜在的に超人的な人工知能レベルに対する興奮と懸念を引き起こしている。
同時に、モデルは、専門家でない人でも期待できないような理解の基本的な誤りを示している。
一見超人的な能力と、ごく少数の人間が起こすエラーの持続性を、どうやって再現すればよいのか?
論文 参考訳(メタデータ) (2023-10-31T18:07:07Z) - AI for Mathematics: A Cognitive Science Perspective [86.02346372284292]
数学は人間によって開発された最も強力な概念体系の1つである。
AIの急速な進歩、特に大規模言語モデル(LLM)の進歩による推進により、そのようなシステム構築に対する新たな、広範な関心が生まれている。
論文 参考訳(メタデータ) (2023-10-19T02:00:31Z) - Genes in Intelligent Agents [45.93363823594323]
動物は遺伝子にコード化された知性を持って生まれるが、機械にはそのような知性がなく、ゼロから学べない。
動物の遺伝子にインスパイアされた「学習遺伝子」と命名された機械の「遺伝子」を定義し、遺伝子強化学習(GRL)を提案する。
GRLは、強化学習(RL)における生物の進化をシミュレートし、学習遺伝子を活用して知能エージェントを学習し、進化させる計算フレームワークである。
論文 参考訳(メタデータ) (2023-06-17T01:24:11Z) - Neurocompositional computing: From the Central Paradox of Cognition to a
new generation of AI systems [120.297940190903]
AIの最近の進歩は、限られた形態のニューロコンフォメーションコンピューティングの使用によってもたらされている。
ニューロコンポジションコンピューティングの新しい形式は、より堅牢で正確で理解しやすいAIシステムを生み出します。
論文 参考訳(メタデータ) (2022-05-02T18:00:10Z) - Making AI 'Smart': Bridging AI and Cognitive Science [0.0]
認知科学の統合により、人工知能の「人工的な」特徴はすぐに「スマート」に置き換えられるかもしれない
これにより、より強力なAIシステムが開発され、同時に人間の脳がどのように機能するかをよりよく理解できるようになる。
このような高度なシステムを開発するためには、まず人間の脳をよりよく理解する必要があるため、AIが人間の文明を乗っ取る可能性は低いと我々は主張する。
論文 参考訳(メタデータ) (2021-12-31T09:30:44Z) - Inductive Biases for Deep Learning of Higher-Level Cognition [108.89281493851358]
興味深い仮説は、人間と動物の知性はいくつかの原則によって説明できるということである。
この研究は、主に高いレベルとシーケンシャルな意識的処理に関心のある人を中心に、より大きなリストを考察する。
これらの特定の原則を明確にする目的は、人間の能力から恩恵を受けるAIシステムを構築するのに役立つ可能性があることである。
論文 参考訳(メタデータ) (2020-11-30T18:29:25Z) - Future Trends for Human-AI Collaboration: A Comprehensive Taxonomy of
AI/AGI Using Multiple Intelligences and Learning Styles [95.58955174499371]
我々は、複数の人間の知性と学習スタイルの様々な側面を説明し、様々なAI問題領域に影響を及ぼす可能性がある。
未来のAIシステムは、人間のユーザと互いにコミュニケーションするだけでなく、知識と知恵を効率的に交換できる。
論文 参考訳(メタデータ) (2020-08-07T21:00:13Z) - Is Intelligence Artificial? [0.0]
本稿では,自然界,次に人工知能に適用可能な統一的な定義を提案する。
コルモゴロフの複素性理論に基づく計量が示唆され、エントロピーに関する測度が導かれる。
承認されたAIテストのバージョンは、後に 'acid test' として提示され、フリー思考プログラムが達成しようとするものかもしれない。
論文 参考訳(メタデータ) (2014-03-05T11:09:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。