論文の概要: Making AI 'Smart': Bridging AI and Cognitive Science
- arxiv url: http://arxiv.org/abs/2112.15360v1
- Date: Fri, 31 Dec 2021 09:30:44 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-03 19:54:16.824191
- Title: Making AI 'Smart': Bridging AI and Cognitive Science
- Title(参考訳): AIをスマートにする - AIと認知科学の橋渡し
- Authors: Madhav Agarwal
- Abstract要約: 認知科学の統合により、人工知能の「人工的な」特徴はすぐに「スマート」に置き換えられるかもしれない
これにより、より強力なAIシステムが開発され、同時に人間の脳がどのように機能するかをよりよく理解できるようになる。
このような高度なシステムを開発するためには、まず人間の脳をよりよく理解する必要があるため、AIが人間の文明を乗っ取る可能性は低いと我々は主張する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The last two decades have seen tremendous advances in Artificial
Intelligence. The exponential growth in terms of computation capabilities has
given us hope of developing humans like robots. The question is: are we there
yet? Maybe not. With the integration of cognitive science, the 'artificial'
characteristic of Artificial Intelligence (AI) might soon be replaced with
'smart'. This will help develop more powerful AI systems and simultaneously
gives us a better understanding of how the human brain works. We discuss the
various possibilities and challenges of bridging these two fields and how they
can benefit each other. We argue that the possibility of AI taking over human
civilization is low as developing such an advanced system requires a better
understanding of the human brain first.
- Abstract(参考訳): 過去20年間、人工知能は飛躍的な進歩を遂げてきた。
計算能力の指数関数的な成長は、ロボットのような人間の開発を願っている。
問題は、私たちはまだそこにいますか?
たぶん違う。
認知科学の統合により、人工知能(AI)の「人工的な」特徴はすぐに「スマート」に置き換えられるかもしれない。
これにより、より強力なAIシステムが開発され、同時に人間の脳がどのように機能するかをよりよく理解できるようになる。
これら2つの分野をブリッジする様々な可能性と課題と、それらが相互に利益をもたらす方法について論じる。
このような高度なシステムを開発するためには、まず人間の脳をよりよく理解する必要があるため、AIが人間の文明を乗っ取る可能性は低いと我々は主張する。
関連論文リスト
- Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
AIシステムは知恵を欠いている。
AI研究はタスクレベルの戦略に焦点を当てているが、メタ認知はAIシステムでは未発達である。
メタ認知機能をAIシステムに統合することは、その堅牢性、説明可能性、協力性、安全性を高めるために不可欠である。
論文 参考訳(メタデータ) (2024-11-04T18:10:10Z) - AI-as-exploration: Navigating intelligence space [0.05657375260432172]
私は、AIが果たさなければならない、無視されるが中心的な科学的な役割の輪郭を明確に表現します。
AI-as-explorationの基本的な推力は、知性の候補構築ブロックを明らかにするシステムの作成と研究である。
論文 参考訳(メタデータ) (2024-01-15T21:06:20Z) - Close the Gates: How we can keep the future human by choosing not to develop superhuman general-purpose artificial intelligence [0.20919309330073077]
今後数年で、人類は汎用AIを作成することによって、不可逆的にしきい値を越えるかもしれない。
これは、人間の社会の中核的な側面を上回り、多くの前例のないリスクを生じさせ、いくつかの意味で制御不能になる可能性がある。
まず、ニューラルネットワークのトレーニングと実行に使用できる計算に厳しい制限を課すことから始めます。
こうした制限がある中で、AIの研究と産業は、人間が理解し制御できる狭義の汎用AIと、そこから大きな利益を享受することのできる汎用AIの両方に焦点を絞ることができる。
論文 参考訳(メタデータ) (2023-11-15T23:41:12Z) - AI for Mathematics: A Cognitive Science Perspective [86.02346372284292]
数学は人間によって開発された最も強力な概念体系の1つである。
AIの急速な進歩、特に大規模言語モデル(LLM)の進歩による推進により、そのようなシステム構築に対する新たな、広範な関心が生まれている。
論文 参考訳(メタデータ) (2023-10-19T02:00:31Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2)は、AIレコメンデーションにユーザの信頼度を明確に定量化し視覚化する。
これにより、AIシステムの予測を調べてテストすることで、システムの意思決定に対する信頼の基盤を確立することができる。
論文 参考訳(メタデータ) (2022-01-26T18:53:09Z) - The Turing Trap: The Promise & Peril of Human-Like Artificial
Intelligence [1.9143819780453073]
人間のような人工知能の利点には、生産性の上昇、余暇の増加、そしておそらく最も重要なのは、私たちの心をよりよく理解することが含まれる。
しかし、あらゆるタイプのAIが人間に似ているわけではない。実際、最も強力なシステムの多くは、人間とは大きく異なる。
機械が人間の労働の代用となるにつれ、労働者は経済的・政治的交渉力を失う。
対照的に、AIが人間を模倣するのではなく強化することに焦点を当てている場合、人間は創造された価値の共有を主張する力を保持します。
論文 参考訳(メタデータ) (2022-01-11T21:07:17Z) - Challenges of Artificial Intelligence -- From Machine Learning and
Computer Vision to Emotional Intelligence [0.0]
AIは人間の支配者ではなく、支援者である、と私たちは信じています。
コンピュータビジョンはAIの開発の中心となっている。
感情は人間の知性の中心であるが、AIではほとんど使われていない。
論文 参考訳(メタデータ) (2022-01-05T06:00:22Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
我々は,信頼に値するAIを実現する上で最も重要な6つの要素,(i)安全とロバスト性,(ii)非差別と公正,(iii)説明可能性,(iv)プライバシー,(v)説明可能性と監査性,(vi)環境ウェルビーイングに焦点をあてる。
各次元について、分類学に基づく最近の関連技術について概観し、実世界のシステムにおけるそれらの応用を概説する。
論文 参考訳(メタデータ) (2021-07-12T14:21:46Z) - Empowering Things with Intelligence: A Survey of the Progress,
Challenges, and Opportunities in Artificial Intelligence of Things [98.10037444792444]
AIがIoTをより速く、より賢く、よりグリーンで、より安全にするための力を与える方法を示します。
まず、認識、学習、推論、行動の4つの視点から、IoTのためのAI研究の進歩を示す。
最後に、私たちの世界を深く再形成する可能性が高いAIoTの有望な応用をいくつかまとめる。
論文 参考訳(メタデータ) (2020-11-17T13:14:28Z) - Future Trends for Human-AI Collaboration: A Comprehensive Taxonomy of
AI/AGI Using Multiple Intelligences and Learning Styles [95.58955174499371]
我々は、複数の人間の知性と学習スタイルの様々な側面を説明し、様々なAI問題領域に影響を及ぼす可能性がある。
未来のAIシステムは、人間のユーザと互いにコミュニケーションするだけでなく、知識と知恵を効率的に交換できる。
論文 参考訳(メタデータ) (2020-08-07T21:00:13Z) - Dynamic Cognition Applied to Value Learning in Artificial Intelligence [0.0]
この分野の数人の研究者が、堅牢で有益で安全な人工知能の概念を開発しようとしている。
人工知能エージェントが人間の価値観に合わせた価値を持っていることは、最も重要である。
この問題に対する可能なアプローチは、SEDのような理論モデルを使用することである。
論文 参考訳(メタデータ) (2020-05-12T03:58:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。