論文の概要: Heuristic Hyperparameter Choice for Image Anomaly Detection
- arxiv url: http://arxiv.org/abs/2307.11197v1
- Date: Thu, 20 Jul 2023 19:20:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-24 14:30:28.333726
- Title: Heuristic Hyperparameter Choice for Image Anomaly Detection
- Title(参考訳): 画像異常検出のためのヒューリスティックハイパーパラメータ選択
- Authors: Zeyu Jiang, Jo\~ao P. C. Bertoldo, Etienne Decenci\`ere
- Abstract要約: 画像の異常検出は、ディープラーニングニューラルネットワークによる基本的なコンピュータビジョン問題である。
モデルは通常、ImageNetのような分類タスクのための大きなデータセットで事前訓練される。
本研究の目的は,これらの特徴に対してNPCA(Negated principal Component Analysis)の次元削減を行うことである。
- 参考スコア(独自算出の注目度): 0.3867363075280543
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anomaly detection (AD) in images is a fundamental computer vision problem by
deep learning neural network to identify images deviating significantly from
normality. The deep features extracted from pretrained models have been proved
to be essential for AD based on multivariate Gaussian distribution analysis.
However, since models are usually pretrained on a large dataset for
classification tasks such as ImageNet, they might produce lots of redundant
features for AD, which increases computational cost and degrades the
performance. We aim to do the dimension reduction of Negated Principal
Component Analysis (NPCA) for these features. So we proposed some heuristic to
choose hyperparameter of NPCA algorithm for getting as fewer components of
features as possible while ensuring a good performance.
- Abstract(参考訳): 画像における異常検出(ad)は、ディープラーニングニューラルネットワークによる、正規性から著しく逸脱した画像を識別する基本的なコンピュータビジョン問題である。
事前訓練されたモデルから抽出された深い特徴は多変量ガウス分布解析に基づいてADに必須であることが証明された。
しかし、モデルは通常、imagenetのような分類タスクのために大きなデータセットで事前トレーニングされるので、多くの冗長なフィーチャをadに生成し、計算コストを増加させ、パフォーマンスを低下させる可能性がある。
我々はこれらの特徴に対してNPCA(Negated principal Component Analysis)の次元削減を図る。
そこで我々は,NPCAアルゴリズムのハイパーパラメータを極力少ない機能として選択し,優れた性能を確保するためのヒューリスティックな提案を行った。
関連論文リスト
- Effort: Efficient Orthogonal Modeling for Generalizable AI-Generated Image Detection [66.16595174895802]
既存のAI生成画像(AIGI)検出手法は、しばしば限定的な一般化性能に悩まされる。
本稿では、AIGI検出において、これまで見過ごされてきた重要な非対称性現象を同定する。
論文 参考訳(メタデータ) (2024-11-23T19:10:32Z) - Chasing Better Deep Image Priors between Over- and Under-parameterization [63.8954152220162]
そこで本研究では,DNN固有の空間性を利用して,LIP(lottery image prior)を新たに検討する。
LIPworksは、コンパクトなモデルサイズでディープデコーダを著しく上回っている。
また、LIPを圧縮センシング画像再構成に拡張し、事前学習したGANジェネレータを前者として使用する。
論文 参考訳(メタデータ) (2024-10-31T17:49:44Z) - Open-Set Deepfake Detection: A Parameter-Efficient Adaptation Method with Forgery Style Mixture [58.60915132222421]
本稿では,顔偽造検出に汎用的かつパラメータ効率の高い手法を提案する。
フォージェリー・ソース・ドメインの多様性を増大させるフォージェリー・ミックス・フォーミュレーションを設計する。
設計したモデルは、トレーニング可能なパラメータを著しく減らし、最先端の一般化性を実現する。
論文 参考訳(メタデータ) (2024-08-23T01:53:36Z) - Image anomaly detection and prediction scheme based on SSA optimized ResNet50-BiGRU model [6.95262627755758]
本稿では,Residual Network(ResNet)とBidirectional Gated Recurrent Unit(BiGRU)を組み合わせたネットワークを提案する。
ビデオ画像から筋肉や骨のポーズの変化を分析して、潜在的な損傷のタイプを予測し、早期警告を提供する。
4つのデータセットで行った実験により、我々のモデルは他のモデルと比較して画像異常検出において最小の誤差を持つことが示された。
論文 参考訳(メタデータ) (2024-06-20T04:26:45Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
本稿では,CLIPモデルを用いた医用異常検出のための軽量な多レベル適応と比較フレームワークを提案する。
提案手法では,複数の残像アダプタを事前学習した視覚エンコーダに統合し,視覚的特徴の段階的向上を実現する。
医学的異常検出ベンチマーク実験により,本手法が現在の最先端モデルを大幅に上回っていることが示された。
論文 参考訳(メタデータ) (2024-03-19T09:28:19Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
本稿では,粗粒度パイプラインと特徴模倣学習に基づく小型物体検出に適した2段階フレームワークを提案する。
CFINetは、大規模な小さなオブジェクト検出ベンチマークであるSODA-DとSODA-Aで最先端の性能を達成する。
論文 参考訳(メタデータ) (2023-08-18T13:13:09Z) - Hyperspectral Remote Sensing Image Classification Based on Multi-scale
Cross Graphic Convolution [20.42582692786715]
マルチスケール機能マイニング学習アルゴリズム(MGRNet)を提案する。
MGRNetは、主成分分析を用いて、元のハイパースペクトル画像(HSI)の次元を減少させ、その意味情報の99.99%を保持する。
3つの一般的なハイパースペクトルデータセットの実験により,本論文で提案したMGRNetアルゴリズムは,認識精度において従来の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2021-06-28T15:28:09Z) - Anomaly Detection in Image Datasets Using Convolutional Neural Networks,
Center Loss, and Mahalanobis Distance [0.0]
ユーザーアクティビティは、品質や無関係な画像やデータベクターのかなりの数を生成します。
ニューラルネットワークの場合、異常は通常分布外サンプルとして定義される。
本研究では,画像データセットにおける非分布サンプルの監督的および半監督的検出手法を提案する。
論文 参考訳(メタデータ) (2021-04-13T13:44:03Z) - Class-Wise Principal Component Analysis for hyperspectral image feature
extraction [0.0]
本稿では,超スペクトルデータの教師付き特徴抽出法であるクラスワイズ主成分分析について述べる。
次元削減は超スペクトル画像分類タスクを補完する重要な前処理ステップである。
論文 参考訳(メタデータ) (2021-04-09T17:25:11Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
最近のコンピュータビジョンの進歩は、分類モデルの一般化能力を改善するために、逆データ拡張を利用する。
本稿では,中間的特徴埋め込みにおける敵対的拡張を提唱する効率的かつ効率的な代替手法を提案する。
代表的なバックボーンネットワークを用いて,多様な視覚認識タスクにまたがる提案手法を検証する。
論文 参考訳(メタデータ) (2021-03-22T20:36:34Z) - Efficient detection of adversarial images [2.6249027950824506]
画像の画素値は外部攻撃者によって修正されるため、人間の目にはほとんど見えない。
本稿では,修正画像の検出を容易にする新しい前処理手法を提案する。
このアルゴリズムの適応バージョンでは、ランダムな数の摂動が適応的に選択される。
論文 参考訳(メタデータ) (2020-07-09T05:35:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。