論文の概要: EndoSurf: Neural Surface Reconstruction of Deformable Tissues with
Stereo Endoscope Videos
- arxiv url: http://arxiv.org/abs/2307.11307v2
- Date: Mon, 4 Sep 2023 03:55:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-07 04:06:24.622174
- Title: EndoSurf: Neural Surface Reconstruction of Deformable Tissues with
Stereo Endoscope Videos
- Title(参考訳): EndoSurf:ステレオ内視鏡による変形性組織の神経表面再構成
- Authors: Ruyi Zha, Xuelian Cheng, Hongdong Li, Mehrtash Harandi, Zongyuan Ge
- Abstract要約: ステレオ内視鏡ビデオから軟組織を再構成することは、多くの医療応用にとって必須の前提条件である。
従来の手法では、3Dシーンの表現が不十分なため、高品質な幾何学や外観を作り出すのに苦労していた。
本稿では,RGBD配列から変形面を効果的に表現する神経場に基づく新しい手法であるEndoSurfを提案する。
- 参考スコア(独自算出の注目度): 72.59573904930419
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reconstructing soft tissues from stereo endoscope videos is an essential
prerequisite for many medical applications. Previous methods struggle to
produce high-quality geometry and appearance due to their inadequate
representations of 3D scenes. To address this issue, we propose a novel
neural-field-based method, called EndoSurf, which effectively learns to
represent a deforming surface from an RGBD sequence. In EndoSurf, we model
surface dynamics, shape, and texture with three neural fields. First, 3D points
are transformed from the observed space to the canonical space using the
deformation field. The signed distance function (SDF) field and radiance field
then predict their SDFs and colors, respectively, with which RGBD images can be
synthesized via differentiable volume rendering. We constrain the learned shape
by tailoring multiple regularization strategies and disentangling geometry and
appearance. Experiments on public endoscope datasets demonstrate that EndoSurf
significantly outperforms existing solutions, particularly in reconstructing
high-fidelity shapes. Code is available at
https://github.com/Ruyi-Zha/endosurf.git.
- Abstract(参考訳): ステレオ内視鏡ビデオから軟組織を再構成することは、多くの医療応用にとって必須の前提条件である。
従来の手法では、3Dシーンの表現が不十分なため、高品質な幾何学や外観を作り出すのに苦労していた。
この問題に対処するため,我々は,RGBD配列から変形面を表現することを効果的に学習する,EndoSurfと呼ばれるニューラルフィールドベースの新しい手法を提案する。
endosurfでは、表面ダイナミクス、形状、テクスチャを3つの神経場でモデル化する。
まず、変形場を用いて、観測された空間から標準空間へ3Dポイントを変換する。
符号付き距離関数(SDF)フィールドと放射場はそれぞれSDFと色を予測し、RGBD画像は異なるボリュームレンダリングによって合成できる。
複数の正則化戦略を調整し、幾何学と外観を分離することで学習した形状を制約する。
公開内視鏡データセットの実験では、特に高忠実度形状の再構成において、EndoSurfが既存のソリューションよりも大幅に優れていることが示されている。
コードはhttps://github.com/Ruyi-Zha/endosurf.gitで入手できる。
関連論文リスト
- DynoSurf: Neural Deformation-based Temporally Consistent Dynamic Surface Reconstruction [93.18586302123633]
本稿では3次元点雲列から時間的に一貫した表面を対応なく再構成する問題について考察する。
テンプレート表面表現と学習可能な変形場を統合した教師なし学習フレームワークDynoSurfを提案する。
実験により、DynoSurfの現在の最先端アプローチに対する顕著な優位性を示した。
論文 参考訳(メタデータ) (2024-03-18T08:58:48Z) - EndoGS: Deformable Endoscopic Tissues Reconstruction with Gaussian Splatting [20.848027172010358]
変形性内視鏡組織再建に対する Gaussian Splatting 法を施行した。
提案手法は,動的シーンを扱うための変形場,空間時空間マスクを用いた深度誘導型監視,表面整列正規化項を含む。
結果として、EndoGSは単一視点ビデオ、推定深度マップ、ラベル付きツールマスクから高品質な変形可能な内視鏡組織を再構成しレンダリングする。
論文 参考訳(メタデータ) (2024-01-21T16:14:04Z) - Nuvo: Neural UV Mapping for Unruly 3D Representations [61.87715912587394]
既存のUVマッピングアルゴリズムは、最先端の3D再構成と生成技術によって生成された幾何学で動作する。
本稿では,3次元再構成と生成技術により生成された幾何学的手法を用いたUVマッピング手法を提案する。
論文 参考訳(メタデータ) (2023-12-11T18:58:38Z) - NeuSD: Surface Completion with Multi-View Text-to-Image Diffusion [56.98287481620215]
本稿では,対象物の一部のみを捉えた複数の画像から3次元表面再構成を行う手法を提案する。
提案手法は, 表面の可視部分の再構成に神経放射場を用いた表面再構成法と, SDS (Score Distillation Sampling) 方式で事前学習した2次元拡散モデルを用いて, 可観測領域の形状を再現する手法である。
論文 参考訳(メタデータ) (2023-12-07T19:30:55Z) - DynamicSurf: Dynamic Neural RGB-D Surface Reconstruction with an
Optimizable Feature Grid [7.702806654565181]
DynamicSurfは、モノクロRGB-Dビデオから非剛体表面の高忠実度3Dモデリングのためのモデルのない暗黙表面再構成手法である。
我々は、表面幾何学の正準表現を現在のフレームにマッピングする神経変形場を学習する。
我々は、純粋ベースアプローチよりも6ドルのスピードアップで、様々なフレームのシーケンスを最適化できることを実証した。
論文 参考訳(メタデータ) (2023-11-14T13:39:01Z) - NeRFMeshing: Distilling Neural Radiance Fields into
Geometrically-Accurate 3D Meshes [56.31855837632735]
我々は、NeRF駆動のアプローチで容易に3次元表面を再構成できるコンパクトで柔軟なアーキテクチャを提案する。
最後の3Dメッシュは物理的に正確で、デバイスアレイ上でリアルタイムでレンダリングできます。
論文 参考訳(メタデータ) (2023-03-16T16:06:03Z) - DiffusionSDF: Conditional Generative Modeling of Signed Distance
Functions [42.015077094731815]
DiffusionSDFは、形状の完全化、単一ビュー再構成、および実走査点雲の再構成のための生成モデルである。
我々は、ニューラルネットワークを介して様々な信号(点雲、2次元画像など)の幾何をパラメータ化するために、ニューラルネットワークに署名された距離関数(SDF)を用いる。
論文 参考訳(メタデータ) (2022-11-24T18:59:01Z) - NeuPhysics: Editable Neural Geometry and Physics from Monocular Videos [82.74918564737591]
本稿では,モノクラーRGBビデオ入力のみから動的シーンの3次元形状と物理パラメータを学習する手法を提案する。
実験により,提案手法は,競合するニューラルフィールドアプローチと比較して,動的シーンのメッシュとビデオの再構成に優れることを示した。
論文 参考訳(メタデータ) (2022-10-22T04:57:55Z) - Surface-Aligned Neural Radiance Fields for Controllable 3D Human
Synthesis [4.597864989500202]
本稿では,多視点RGBビデオから暗黙の3次元モデルを再構築する手法を提案する。
本手法は,人体メッシュの表面から,メッシュ表面点と署名された距離のニューラルシーン表現を定義する。
論文 参考訳(メタデータ) (2022-01-05T16:25:32Z) - Dynamic Reconstruction of Deformable Soft-tissue with Stereo Scope in
Minimal Invasive Surgery [24.411005883017832]
最小侵襲手術では, 最新の軟組織表面の変形形状を再構築し, 可視化することが重要である。
本稿では、変形可能な表面の高密度再構成のための革新的同時局所化マッピング(SLAM)アルゴリズムを提案する。
公開データセットを用いたインビビオ実験では、3Dモデルがさまざまなソフトタスクに対してインクリメンタルに構築可能であることが示されている。
論文 参考訳(メタデータ) (2020-03-22T16:50:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。