A Deep Learning Approach for Overall Survival Prediction in Lung Cancer with Missing Values
- URL: http://arxiv.org/abs/2307.11465v5
- Date: Mon, 1 Jul 2024 08:01:56 GMT
- Title: A Deep Learning Approach for Overall Survival Prediction in Lung Cancer with Missing Values
- Authors: Camillo Maria Caruso, Valerio Guarrasi, Sara Ramella, Paolo Soda,
- Abstract summary: We present a novel approach to survival analysis with missing values in the context of non-small cell lung cancer (NSCLC) patients.
This model exploits the strengths of the transformer architecture to account only for available features without requiring any imputation strategy.
It is able to account for both censored and uncensored patients, as well as changes in risks over time.
- Score: 0.9349653765341301
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In the field of lung cancer research, particularly in the analysis of overall survival (OS), artificial intelligence (AI) serves crucial roles with specific aims. Given the prevalent issue of missing data in the medical domain, our primary objective is to develop an AI model capable of dynamically handling this missing data. Additionally, we aim to leverage all accessible data, effectively analyzing both uncensored patients who have experienced the event of interest and censored patients who have not, by embedding a specialized technique within our AI model, not commonly utilized in other AI tasks. Through the realization of these objectives, our model aims to provide precise OS predictions for non-small cell lung cancer (NSCLC) patients, thus overcoming these significant challenges. We present a novel approach to survival analysis with missing values in the context of NSCLC, which exploits the strengths of the transformer architecture to account only for available features without requiring any imputation strategy. More specifically, this model tailors the transformer architecture to tabular data by adapting its feature embedding and masked self-attention to mask missing data and fully exploit the available ones. By making use of ad-hoc designed losses for OS, it is able to account for both censored and uncensored patients, as well as changes in risks over time. We compared our method with state-of-the-art models for survival analysis coupled with different imputation strategies. We evaluated the results obtained over a period of 6 years using different time granularities obtaining a Ct-index, a time-dependent variant of the C-index, of 71.97, 77.58 and 80.72 for time units of 1 month, 1 year and 2 years, respectively, outperforming all state-of-the-art methods regardless of the imputation method used.
Related papers
- Towards Fair Medical AI: Adversarial Debiasing of 3D CT Foundation Embeddings [13.985136866888379]
Self-supervised learning has revolutionized medical imaging by enabling efficient and generalizable feature extraction from large-scale unlabeled datasets.
Recently, self-supervised foundation models have been extended to three-dimensional (3D) computed tomography (CT) data, generating compact, information-rich embeddings with 1408 features.
These embeddings have been shown to encode demographic information, such as age, sex, and race, which poses a significant risk to the fairness of clinical applications.
We propose a Variation Autoencoder (VAE) based adversarial debiasing framework to transform these embeddings into a new latent space where demographic
arXiv Detail & Related papers (2025-02-05T20:32:42Z) - Fast-staged CNN Model for Accurate pulmonary diseases and Lung cancer detection [0.0]
This research evaluates a deep learning model designed to detect lung cancer, specifically pulmonary nodules, along with eight other lung pathologies, using chest radiographs.
A two-stage classification system, utilizing ensemble methods and transfer learning, is employed to first triage images into Normal or Abnormal.
The model achieves notable results in classification, with a top-performing accuracy of 77%, a sensitivity of 0.713, a specificity of 0.776 during external validation, and an AUC score of 0.888.
arXiv Detail & Related papers (2024-12-16T11:47:07Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressive neurodegenerative disease that presents individuals with limited treatment options.
The present investigation, spearheaded by the iDPP@CLEF 2024 challenge, focuses on utilizing sensor-derived data obtained through an app.
arXiv Detail & Related papers (2024-07-10T19:17:23Z) - Deep Learning-Based Segmentation of Tumors in PET/CT Volumes: Benchmark of Different Architectures and Training Strategies [0.12301374769426145]
This study examines various neural network architectures and training strategies for automatically segmentation of cancer lesions.
V-Net and nnU-Net models were the most effective for their respective datasets.
Eliminating cancer-free cases from the AutoPET dataset was found to improve the performance of most models.
arXiv Detail & Related papers (2024-04-15T13:03:42Z) - SAVAE: Leveraging the variational Bayes autoencoder for survival
analysis [10.0060346233449]
We introduce SAVAE (Survival Analysis Variational Autoencoder), a novel approach based on Variational Autoencoders.
Savoe contributes significantly to the field by introducing a tailored ELBO formulation for survival analysis.
It offers a general method that consistently performs well on various metrics, demonstrating robustness and stability through different experiments.
arXiv Detail & Related papers (2023-12-22T12:36:50Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
Knee osteoarthritis (KOA) is a widespread condition that can cause chronic pain and stiffness in the knee joint.
We propose an automated approach that employs the Swin Transformer to predict the severity of KOA.
arXiv Detail & Related papers (2023-07-10T09:49:30Z) - A Meta-GNN approach to personalized seizure detection and classification [53.906130332172324]
We propose a personalized seizure detection and classification framework that quickly adapts to a specific patient from limited seizure samples.
We train a Meta-GNN based classifier that learns a global model from a set of training patients.
We show that our method outperforms the baselines by reaching 82.7% on accuracy and 82.08% on F1 score after only 20 iterations on new unseen patients.
arXiv Detail & Related papers (2022-11-01T14:12:58Z) - Practical Challenges in Differentially-Private Federated Survival
Analysis of Medical Data [57.19441629270029]
In this paper, we take advantage of the inherent properties of neural networks to federate the process of training of survival analysis models.
In the realistic setting of small medical datasets and only a few data centers, this noise makes it harder for the models to converge.
We propose DPFed-post which adds a post-processing stage to the private federated learning scheme.
arXiv Detail & Related papers (2022-02-08T10:03:24Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.