論文の概要: BandRe: Rethinking Band-Pass Filters for Scale-Wise Object Detection
Evaluation
- arxiv url: http://arxiv.org/abs/2307.11748v1
- Date: Fri, 21 Jul 2023 17:58:47 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-24 11:45:37.762964
- Title: BandRe: Rethinking Band-Pass Filters for Scale-Wise Object Detection
Evaluation
- Title(参考訳): BandRe: スケールワイズオブジェクト検出のためのバンドパスフィルタの再検討
- Authors: Yosuke Shinya
- Abstract要約: 細部と信頼性のバランスをとるための,新しいスケールワイドメトリクスを提案する。
2つのデータセットに対して2つの手法による実験を行い、提案手法とデータセット間の差異を強調できることを示す。
- 参考スコア(独自算出の注目度): 0.6091702876917281
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Scale-wise evaluation of object detectors is important for real-world
applications. However, existing metrics are either coarse or not sufficiently
reliable. In this paper, we propose novel scale-wise metrics that strike a
balance between fineness and reliability, using a filter bank consisting of
triangular and trapezoidal band-pass filters. We conduct experiments with two
methods on two datasets and show that the proposed metrics can highlight the
differences between the methods and between the datasets. Code is available at
https://github.com/shinya7y/UniverseNet .
- Abstract(参考訳): オブジェクト検出器のスケールワイド評価は,現実の応用において重要である。
しかし、既存のメトリクスは粗いか十分に信頼できないかのいずれかである。
本稿では,三角帯域通過フィルタと台形帯域通過フィルタを組み合わせたフィルタバンクを用いて,微細度と信頼性のバランスをとる新しい尺度を提案する。
2つのデータセットに対して2つの手法による実験を行い、提案手法とデータセット間の差異を強調できることを示す。
コードはhttps://github.com/shinya7y/UniverseNetで入手できる。
関連論文リスト
- RGB-based Category-level Object Pose Estimation via Decoupled Metric
Scale Recovery [72.13154206106259]
本研究では、6次元のポーズとサイズ推定を分離し、不完全なスケールが剛性変換に与える影響を緩和するパイプラインを提案する。
具体的には,事前学習した単分子推定器を用いて局所的な幾何学的情報を抽出する。
別個のブランチは、カテゴリレベルの統計に基づいてオブジェクトのメートル法スケールを直接復元するように設計されている。
論文 参考訳(メタデータ) (2023-09-19T02:20:26Z) - Disentangle Your Dense Object Detector [82.22771433419727]
深層学習に基づく高密度物体検出器はここ数年で大きな成功を収め、ビデオ理解などのマルチメディアアプリケーションにも応用されてきた。
しかし、現在の高密度検出器の訓練パイプラインは、保持できない多くの接続に妥協されている。
そこで本研究では, 簡易かつ効果的な遠心分離機構を設計し, 現在の最先端検出器に統合するDED(Disentangled Dense Object Detector)を提案する。
論文 参考訳(メタデータ) (2021-07-07T00:52:16Z) - Pseudo-IoU: Improving Label Assignment in Anchor-Free Object Detection [60.522877583407904]
現在のアンカーフリー物体検出器は非常に単純で有効であるが、正確なラベル割り当て方法がない。
Pseudo-Intersection-over-Union(Pseudo-IoU): アンカーフリーなオブジェクト検出フレームワークに、より標準化され、正確な割り当てルールをもたらす単純なメトリックである。
本手法はベルやホイッスルを使わずに最新のアンカーフリー手法と同等の性能を実現する。
論文 参考訳(メタデータ) (2021-04-29T02:48:47Z) - Dual Refinement Feature Pyramid Networks for Object Detection [2.88935873409577]
FPNは、オブジェクト検出器で使われる一般的なコンポーネントであり、隣り合うレベルの特徴と和によって、マルチスケール情報を補う。
本稿では,画素レベルと特徴マップレベルから設計欠陥を解析する。
本研究では,パラメータフリーな特徴ピラミッドネットワークであるDual Refinement Feature Pyramid Networksを設計した。
論文 参考訳(メタデータ) (2020-12-03T07:17:03Z) - Online Multi-Object Tracking with delta-GLMB Filter based on Occlusion
and Identity Switch Handling [1.713291434132985]
デルタ一般化ラベル付きマルチベルヌーリ (delta Generalized Labeled Multi-Bernoulli, Delta-GLMB) フィルタフレームワークにおいて, オンラインマルチオブジェクト追跡 (MOT) 手法を提案する。
閉塞とミス検出の問題に対処するため,トラックアソシエーション法を提案する。
提案手法を,よく知られたMOT15およびMOT17テストデータセット上で評価する。
論文 参考訳(メタデータ) (2020-11-19T21:38:40Z) - Dense Label Encoding for Boundary Discontinuity Free Rotation Detection [69.75559390700887]
本稿では,分類に基づく比較的研究の少ない方法論について検討する。
我々は2つの側面でフロンティアを推し進めるための新しい手法を提案する。
航空画像のための大規模公開データセットの実験と視覚解析は,我々のアプローチの有効性を示している。
論文 参考訳(メタデータ) (2020-11-19T05:42:02Z) - Align Deep Features for Oriented Object Detection [40.28244152216309]
本稿では、FAM(Feature Alignment Module)とODM(Oriented Detection Module)の2つのモジュールからなる単発アライメントネットワーク(S$2$A-Net)を提案する。
FAMは、アンカー・リファインメント・ネットワークで高品質なアンカーを生成し、アンカーボックスに応じた畳み込み特徴と、新しいアライメント・コンボリューション・コンボリューションとを適応的に調整することができる。
ODMは、まず、向き情報を符号化するためにアクティブな回転フィルタを採用し、次に、分類スコアとローカライゼーション精度の不整合を軽減するために、向きに敏感で方向不変な特徴を生成する。
論文 参考訳(メタデータ) (2020-08-21T09:55:13Z) - Multi-scale Interactive Network for Salient Object Detection [91.43066633305662]
本稿では,隣接レベルからの機能を統合するためのアグリゲート・インタラクション・モジュールを提案する。
より効率的なマルチスケール機能を得るために、各デコーダユニットに自己相互作用モジュールを埋め込む。
5つのベンチマークデータセットによる実験結果から,提案手法は後処理を一切行わず,23の最先端手法に対して良好に動作することが示された。
論文 参考訳(メタデータ) (2020-07-17T15:41:37Z) - Network Anomaly Detection based on Tensor Decomposition [10.285394886473217]
多くの異常検出方法は、ネットワークコアルータで収集されたパケット検査に基づいている。
本稿では,パケットヘッダ検査が不要な代替手法を提案する。
論文 参考訳(メタデータ) (2020-04-20T21:45:05Z) - EHSOD: CAM-Guided End-to-end Hybrid-Supervised Object Detection with
Cascade Refinement [53.69674636044927]
本稿では,エンド・ツー・エンドのハイブリッド型オブジェクト検出システムであるEHSODについて述べる。
完全なアノテートと弱いアノテートの両方で、ワンショットでトレーニングすることができる。
完全なアノテートされたデータの30%しか持たない複数のオブジェクト検出ベンチマークで、同等の結果が得られる。
論文 参考訳(メタデータ) (2020-02-18T08:04:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。