論文の概要: Network Anomaly Detection based on Tensor Decomposition
- arxiv url: http://arxiv.org/abs/2004.09655v1
- Date: Mon, 20 Apr 2020 21:45:05 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-11 19:24:04.913099
- Title: Network Anomaly Detection based on Tensor Decomposition
- Title(参考訳): テンソル分解に基づくネットワーク異常検出
- Authors: Ananda Streit, Gustavo H. A. Santos, Rosa Le\~ao, Edmundo de Souza e
Silva, Daniel Menasch\'e, Don Towsley
- Abstract要約: 多くの異常検出方法は、ネットワークコアルータで収集されたパケット検査に基づいている。
本稿では,パケットヘッダ検査が不要な代替手法を提案する。
- 参考スコア(独自算出の注目度): 10.285394886473217
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The problem of detecting anomalies in time series from network measurements
has been widely studied and is a topic of fundamental importance. Many anomaly
detection methods are based on packet inspection collected at the network core
routers, with consequent disadvantages in terms of computational cost and
privacy. We propose an alternative method in which packet header inspection is
not needed. The method is based on the extraction of a normal subspace obtained
by the tensor decomposition technique considering the correlation between
different metrics. We propose a new approach for online tensor decomposition
where changes in the normal subspace can be tracked efficiently. Another
advantage of our proposal is the interpretability of the obtained models. The
flexibility of the method is illustrated by applying it to two distinct
examples, both using actual data collected on residential routers.
- Abstract(参考訳): ネットワーク計測から時系列の異常を検出する問題は広く研究され,重要な話題となっている。
多くの異常検出方法は、ネットワークコアルータで収集されたパケット検査に基づいており、計算コストとプライバシの点で相反する。
本稿では,パケットヘッダ検査が不要な代替手法を提案する。
この方法は、異なるメトリクス間の相関を考慮したテンソル分解法によって得られる正規部分空間の抽出に基づいている。
本稿では,通常の部分空間の変化を効率的に追跡できるオンラインテンソル分解法を提案する。
我々の提案のもう1つの利点は、得られたモデルの解釈可能性である。
この方法の柔軟性は、住宅用ルータで収集された実際のデータを用いて、2つの異なる例に適用することで示される。
関連論文リスト
- Projection Regret: Reducing Background Bias for Novelty Detection via
Diffusion Models [72.07462371883501]
本研究では,非意味情報のバイアスを緩和する効率的な新規性検出手法であるemphProjection Regret(PR)を提案する。
PRは、テスト画像とその拡散ベースの投影の間の知覚距離を計算し、異常を検出する。
拡張実験により、PRは生成モデルに基づく新規性検出手法の先行技術よりも有意なマージンで優れていることが示された。
論文 参考訳(メタデータ) (2023-12-05T09:44:47Z) - Variational Inference: Posterior Threshold Improves Network Clustering Accuracy in Sparse Regimes [2.5782420501870296]
本稿では,各反復後のコミュニティ割り当ての後部をハードしきい値にすることで,変分推論法を改善するための簡易な方法を提案する。
提案手法は,ネットワークの平均ノード次数が有界であっても,真のコミュニティラベルを収束させ,正確に復元可能であることを示す。
論文 参考訳(メタデータ) (2023-01-12T00:24:54Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
我々は, 正規サンプルの分布を低次元多様体で支持する異常検出において, 特定のユースケースに焦点を当てた。
我々は、訓練中に識別情報を活用する自己指導型学習体制に適応するが、通常の例のサブ多様体に焦点をあてる。
製造領域における視覚異常検出のための挑戦的なベンチマークであるMVTec ADデータセットで、最先端の新たな結果を達成する。
論文 参考訳(メタデータ) (2022-06-23T14:16:30Z) - TracInAD: Measuring Influence for Anomaly Detection [0.0]
本稿では,TracInに基づく異常をフラグする新しい手法を提案する。
本研究では,変分オートエンコーダを用いて,テストポイントにおけるトレーニングポイントのサブサンプルの平均的な影響が,異常のプロキシとして有効であることを示す。
論文 参考訳(メタデータ) (2022-05-03T08:20:15Z) - Intrusion Detection using Spatial-Temporal features based on Riemannian
Manifold [1.14219428942199]
ネットワークトラフィックデータは、異なるネットワークプロトコルの下で異なるデータバイトパケットの組み合わせである。
これらのトラフィックパケットは、複雑な時間変化の非線形関係を持つ。
既存の最先端の手法は、相関に基づいて特徴を複数のサブセットに融合することで、この課題に発展する。
これはしばしば、高い計算コストと、ネットワークトラフィックのリアルタイム処理に制限となる手動サポートを必要とする。
論文 参考訳(メタデータ) (2021-10-31T23:50:59Z) - Manifold Regularized Dynamic Network Pruning [102.24146031250034]
本稿では,全インスタンスの多様体情報をプルーンドネットワークの空間に埋め込むことにより,冗長フィルタを動的に除去する新しいパラダイムを提案する。
提案手法の有効性をいくつかのベンチマークで検証し,精度と計算コストの両面で優れた性能を示す。
論文 参考訳(メタデータ) (2021-03-10T03:59:03Z) - Deep Shells: Unsupervised Shape Correspondence with Optimal Transport [52.646396621449]
本稿では,3次元形状対応のための教師なし学習手法を提案する。
提案手法は,複数のデータセット上での最先端技術よりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2020-10-28T22:24:07Z) - DNS Covert Channel Detection via Behavioral Analysis: a Machine Learning
Approach [0.09176056742068815]
本稿では,ネットワーク監視システムから受動的に抽出されたDNSネットワークデータの解析に基づいて,効果的な隠蔽チャネル検出手法を提案する。
提案手法は15日間の実験実験で評価され,最も関連する流出・トンネル攻撃をカバーするトラフィックを注入した。
論文 参考訳(メタデータ) (2020-10-04T13:28:28Z) - Partially Observable Online Change Detection via Smooth-Sparse
Decomposition [16.8028358824706]
本研究は,センサ容量の制限により,各センシング時点におけるデータストリームのサブセットのみを観測できる,疎度な変化を伴う高次元データストリームのオンライン変化検出について考察する。
一方、検出方式は、部分的に観測可能なデータを扱うことができ、一方、スパース変化に対する効率的な検出能力を有するべきである。
本稿では,CDSSDと呼ばれる新しい検出手法を提案する。特にスムーズな分解によるスムーズな変化を伴う高次元データの構造について述べる。
論文 参考訳(メタデータ) (2020-09-22T16:03:04Z) - Deep Semantic Matching with Foreground Detection and Cycle-Consistency [103.22976097225457]
深層ネットワークに基づく弱い教師付きセマンティックマッチングに対処する。
本研究では,背景乱れの影響を抑えるために,前景領域を明示的に推定する。
複数の画像にまたがって予測変換を強制し、幾何的に可視かつ一貫したサイクル一貫性の損失を発生させる。
論文 参考訳(メタデータ) (2020-03-31T22:38:09Z) - Domain Adaptation: Learning Bounds and Algorithms [80.85426994513541]
本稿では,任意の損失関数を持つ適応問題に適した分布距離,差分距離を新たに導入する。
広い損失関数族に対する領域適応のための新しい一般化境界を導出する。
また、正規化に基づくアルゴリズムの大規模クラスに対する新しい適応境界も提示する。
論文 参考訳(メタデータ) (2009-02-19T18:42:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。