論文の概要: Adapting Hybrid Genetic Search for Dynamic Vehicle Routing
- arxiv url: http://arxiv.org/abs/2307.11800v1
- Date: Fri, 21 Jul 2023 11:16:49 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-25 19:38:20.980927
- Title: Adapting Hybrid Genetic Search for Dynamic Vehicle Routing
- Title(参考訳): 動的車両経路に対するハイブリッド遺伝的探索の適用
- Authors: Mohammed Ghannam and Ambros Gleixner
- Abstract要約: 我々は,VRPTWの解法であるHybrid Genetic Search (HGS) アルゴリズムを動的変種に適用する。
弊社のアプローチでは、これらのコンポーネントをDVRPTWに修正し、ソリューションの品質と今後の顧客の到着に対する制約のバランスを取ろうとしている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The dynamic vehicle routing problem with time windows (DVRPTW) is a
generalization of the classical VRPTW to an online setting, where customer data
arrives in batches and real-time routing solutions are required. In this paper
we adapt the Hybrid Genetic Search (HGS) algorithm, a successful heuristic for
VRPTW, to the dynamic variant. We discuss the affected components of the HGS
algorithm including giant-tour representation, cost computation, initial
population, crossover, and local search. Our approach modifies these components
for DVRPTW, attempting to balance solution quality and constraints on future
customer arrivals. To this end, we devise methods for comparing different-sized
solutions, normalizing costs, and accounting for future epochs that do not
require any prior training. Despite this limitation, computational results on
data from the EURO meets NeurIPS Vehicle Routing Competition 2022 demonstrate
significantly improved solution quality over the best-performing baseline
algorithm.
- Abstract(参考訳): 時間窓付き動的車両ルーティング問題(DVRPTW)は、従来のVRPTWをオンライン環境に一般化したものである。
本稿では,VRPTWのためのヒューリスティックアルゴリズムであるHybrid Genetic Search (HGS)アルゴリズムを動的変種に適用する。
本稿では,hgsアルゴリズムの影響を受ける構成要素として,巨大ツーリング表現,コスト計算,初期個体数,クロスオーバー,局所探索について論じる。
弊社のアプローチでは、これらのコンポーネントをDVRPTWに修正し、ソリューションの品質と今後の顧客の到着に対する制約のバランスを図っている。
この目的のために私たちは,異なるサイズのソリューションを比較し,コストを正規化し,事前のトレーニングを必要としない将来の時代を計算するための手法を考案する。
この制限にもかかわらず、EUROのデータに対する計算結果がNeurIPS Vehicle Routing Competition 2022と一致し、最高の性能のベースラインアルゴリズムよりも解の質が大幅に向上した。
関連論文リスト
- Multiobjective Vehicle Routing Optimization with Time Windows: A Hybrid Approach Using Deep Reinforcement Learning and NSGA-II [52.083337333478674]
本稿では、時間窓を用いた多目的車両ルーティング問題(MOVRPTW)に対処するために、ウェイト・アウェア・ディープ・強化学習(WADRL)手法を提案する。
WADRLの結果を最適化するために非支配的ソート遺伝的アルゴリズム-II (NSGA-II) 法を用いる。
論文 参考訳(メタデータ) (2024-07-18T02:46:06Z) - Genetic Algorithms with Neural Cost Predictor for Solving Hierarchical Vehicle Routing Problems [20.684353068460375]
車両の経路決定が高次決定と連動する場合、結果の最適化問題は計算に重大な課題をもたらす。
本稿では,ニューラルコスト予測器を用いた遺伝的アルゴリズム(GANCP)という,ディープラーニングに基づく新しいアプローチを提案する。
特に,提案するニューラルネットワークは,静電容量化車両ルーティング問題を解決するHGS-CVRPオープンソースパッケージの目的値について学習する。
論文 参考訳(メタデータ) (2023-10-22T02:46:37Z) - Roulette-Wheel Selection-Based PSO Algorithm for Solving the Vehicle
Routing Problem with Time Windows [58.891409372784516]
本稿では,Roulette Wheel Method (RWPSO) を用いた新しいPSO手法を提案する。
RWPSOのSolomon VRPTWベンチマークデータセットを用いた実験は、RWPSOが文学の他の最先端アルゴリズムと競合していることを示している。
論文 参考訳(メタデータ) (2023-06-04T09:18:02Z) - Combinatorial Optimization enriched Machine Learning to solve the
Dynamic Vehicle Routing Problem with Time Windows [5.4807970361321585]
最適化層を組み込んだ新しい機械学習パイプラインを提案する。
最近,EURO Meets NeurIPS Competition at NeurIPS 2022において,このパイプラインを波による動的車両ルーティング問題に適用した。
提案手法は,提案した動的車両経路問題の解法において,他の全ての手法よりも優れていた。
論文 参考訳(メタデータ) (2023-04-03T08:23:09Z) - Offline Contextual Bandits for Wireless Network Optimization [107.24086150482843]
本稿では,ユーザ要求の変化に応じて,ネットワーク内の各セルの構成パラメータを自動的に調整するポリシの学習方法について検討する。
私たちのソリューションは、オフライン学習のための既存の方法を組み合わせて、この文脈で生じる重要な課題を克服する原則的な方法でそれらを適応します。
論文 参考訳(メタデータ) (2021-11-11T11:31:20Z) - Deep Policy Dynamic Programming for Vehicle Routing Problems [89.96386273895985]
本稿では,学習ニューラルの強みと動的プログラミングアルゴリズムの強みを組み合わせた深層ポリシー動的プログラミング(d pdp)を提案する。
D PDPは、例の解からエッジを予測するために訓練されたディープニューラルネットワークから派生したポリシーを使用して、DP状態空間を優先し、制限する。
本研究では,旅行セールスマン問題 (TSP) と車両ルーティング問題 (VRP) の枠組みを評価し,ニューラルネットワークが(制限された)DPアルゴリズムの性能を向上させることを示す。
論文 参考訳(メタデータ) (2021-02-23T15:33:57Z) - A Two-Stage Metaheuristic Algorithm for the Dynamic Vehicle Routing
Problem in Industry 4.0 approach [3.6317403990273402]
本研究は、各車両の容量制約を超えることなく、輸送コストを最小化することを目的とする。
新しい注文は、車両が既存の注文を配送している間に、システムに特定のタイミングで届く。
本稿では,DVRPを解くための2段階ハイブリッドアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-08-10T18:39:03Z) - Meta-Reinforcement Learning for Trajectory Design in Wireless UAV
Networks [151.65541208130995]
ドローン基地局(DBS)は、要求が動的で予測不可能な地上ユーザーへのアップリンク接続を提供するために派遣される。
この場合、DBSの軌道は動的ユーザアクセス要求を満たすように適応的に調整されなければならない。
新たな環境に遭遇したDBSの軌道に適応するために,メタラーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-05-25T20:43:59Z) - Hybrid 2-stage Imperialist Competitive Algorithm with Ant Colony
Optimization for Solving Multi-Depot Vehicle Routing Problem [0.0]
本稿では,2つの集団ベースアルゴリズムに基づくハイブリッド2段階アプローチを提案する。
提案したハイブリッドアルゴリズムでは、ICAがデポへの顧客の割り当てを担当し、ACOが顧客のルーティングとシークエンシングを行っている。
その結果、単純なACOやICAよりも明らかに改善され、他の競合アルゴリズムと比較して非常に競争力のある結果が得られた。
論文 参考訳(メタデータ) (2020-04-07T17:43:06Z) - Reinforcement Learning Based Vehicle-cell Association Algorithm for
Highly Mobile Millimeter Wave Communication [53.47785498477648]
本稿では,ミリ波通信網における車とセルの関連性について検討する。
まず、ユーザ状態(VU)問題を離散的な非車両関連最適化問題として定式化する。
提案手法は,複数のベースライン設計と比較して,ユーザの複雑性とVUEの20%削減の合計で最大15%のゲインが得られる。
論文 参考訳(メタデータ) (2020-01-22T08:51:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。