Digital Modeling on Large Kernel Metamaterial Neural Network
- URL: http://arxiv.org/abs/2307.11862v1
- Date: Fri, 21 Jul 2023 19:07:02 GMT
- Title: Digital Modeling on Large Kernel Metamaterial Neural Network
- Authors: Quan Liu, Hanyu Zheng, Brandon T. Swartz, Ho hin Lee, Zuhayr Asad,
Ivan Kravchenko, Jason G. Valentine and Yuankai Huo
- Abstract summary: We propose a large kernel metamaterial neural network (LMNN) that maximizes the digital capacity of the state-of-the-art (SOTA) MNN.
With the proposed LMNN, the cost of the convolutional front-end can be offloaded into fabricated optical hardware.
- Score: 7.248553563042369
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep neural networks (DNNs) utilized recently are physically deployed with
computational units (e.g., CPUs and GPUs). Such a design might lead to a heavy
computational burden, significant latency, and intensive power consumption,
which are critical limitations in applications such as the Internet of Things
(IoT), edge computing, and the usage of drones. Recent advances in optical
computational units (e.g., metamaterial) have shed light on energy-free and
light-speed neural networks. However, the digital design of the metamaterial
neural network (MNN) is fundamentally limited by its physical limitations, such
as precision, noise, and bandwidth during fabrication. Moreover, the unique
advantages of MNN's (e.g., light-speed computation) are not fully explored via
standard 3x3 convolution kernels. In this paper, we propose a novel large
kernel metamaterial neural network (LMNN) that maximizes the digital capacity
of the state-of-the-art (SOTA) MNN with model re-parametrization and network
compression, while also considering the optical limitation explicitly. The new
digital learning scheme can maximize the learning capacity of MNN while
modeling the physical restrictions of meta-optic. With the proposed LMNN, the
computation cost of the convolutional front-end can be offloaded into
fabricated optical hardware. The experimental results on two publicly available
datasets demonstrate that the optimized hybrid design improved classification
accuracy while reducing computational latency. The development of the proposed
LMNN is a promising step towards the ultimate goal of energy-free and
light-speed AI.
Related papers
- Scalable Mechanistic Neural Networks [52.28945097811129]
We propose an enhanced neural network framework designed for scientific machine learning applications involving long temporal sequences.
By reformulating the original Mechanistic Neural Network (MNN) we reduce the computational time and space complexities from cubic and quadratic with respect to the sequence length, respectively, to linear.
Extensive experiments demonstrate that S-MNN matches the original MNN in precision while substantially reducing computational resources.
arXiv Detail & Related papers (2024-10-08T14:27:28Z) - Optical Computing for Deep Neural Network Acceleration: Foundations, Recent Developments, and Emerging Directions [3.943289808718775]
We discuss the fundamentals and state-of-the-art developments in optical computing, with an emphasis on deep neural networks (DNNs)
Various promising approaches are described for engineering optical devices, enhancing optical circuits, and designing architectures that can adapt optical computing to a variety of DNN workloads.
Novel techniques for hardware/software co-design that can intelligently tune and map DNN models to improve performance and energy-efficiency on optical computing platforms across high performance and resource constrained embedded, edge, and IoT platforms are also discussed.
arXiv Detail & Related papers (2024-07-30T20:50:30Z) - ExtremeMETA: High-speed Lightweight Image Segmentation Model by Remodeling Multi-channel Metamaterial Imagers [8.976310466890805]
We propose a large kernel lightweight segmentation model, ExtremeMETA, based on the ExtremeC3Net.
Results show that the optimized efficient design improved segmentation performance from 92.45 to 95.97 on mIoU while reducing computational FLOPs from 461.07 MMacs to 166.03 MMacs.
arXiv Detail & Related papers (2024-05-27T18:03:37Z) - Free-Space Optical Spiking Neural Network [0.0]
We introduce the Free-space Optical deep Spiking Convolutional Neural Network (OSCNN)
This novel approach draws inspiration from computational models of the human eye.
Our results demonstrate promising performance with minimal latency and power consumption compared to their electronic ONN counterparts.
arXiv Detail & Related papers (2023-11-08T09:41:14Z) - Energy-Efficient Deployment of Machine Learning Workloads on
Neuromorphic Hardware [0.11744028458220425]
Several edge deep learning hardware accelerators have been released that specifically focus on reducing the power and area consumed by deep neural networks (DNNs)
Spiked neural networks (SNNs) which operate on discrete time-series data have been shown to achieve substantial power reductions when deployed on specialized neuromorphic event-based/asynchronous hardware.
In this work, we provide a general guide to converting pre-trained DNNs into SNNs while also presenting techniques to improve the deployment of converted SNNs on neuromorphic hardware.
arXiv Detail & Related papers (2022-10-10T20:27:19Z) - Single-Shot Optical Neural Network [55.41644538483948]
'Weight-stationary' analog optical and electronic hardware has been proposed to reduce the compute resources required by deep neural networks.
We present a scalable, single-shot-per-layer weight-stationary optical processor.
arXiv Detail & Related papers (2022-05-18T17:49:49Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
This work presents the development of a hardware accelerator for an SNN, with off-line training, applied to an image recognition task.
The design targets a Xilinx Artix-7 FPGA, using in total around the 40% of the available hardware resources.
It reduces the classification time by three orders of magnitude, with a small 4.5% impact on the accuracy, if compared to its software, full precision counterpart.
arXiv Detail & Related papers (2022-01-18T13:59:22Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
High-dimension parameter model and large-scale mathematical calculation restrict execution efficiency, especially for Internet of Things (IoT) devices.
We propose a new Deep Reinforcement Learning (DRL)-Soft Actor Critic for discrete (SAC-d), which generates the emphexit point, emphexit point, and emphcompressing bits by soft policy iterations.
Based on the latency and accuracy aware reward design, such an computation can well adapt to the complex environment like dynamic wireless channel and arbitrary processing, and is capable of supporting the 5G URL
arXiv Detail & Related papers (2022-01-09T09:31:50Z) - E3NE: An End-to-End Framework for Accelerating Spiking Neural Networks
with Emerging Neural Encoding on FPGAs [6.047137174639418]
End-to-end framework E3NE automates the generation of efficient SNN inference logic for FPGAs.
E3NE uses less than 50% of hardware resources and 20% less power, while reducing the latency by an order of magnitude.
arXiv Detail & Related papers (2021-11-19T04:01:19Z) - Sub-bit Neural Networks: Learning to Compress and Accelerate Binary
Neural Networks [72.81092567651395]
Sub-bit Neural Networks (SNNs) are a new type of binary quantization design tailored to compress and accelerate BNNs.
SNNs are trained with a kernel-aware optimization framework, which exploits binary quantization in the fine-grained convolutional kernel space.
Experiments on visual recognition benchmarks and the hardware deployment on FPGA validate the great potentials of SNNs.
arXiv Detail & Related papers (2021-10-18T11:30:29Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.