ExtremeMETA: High-speed Lightweight Image Segmentation Model by Remodeling Multi-channel Metamaterial Imagers
- URL: http://arxiv.org/abs/2405.17568v1
- Date: Mon, 27 May 2024 18:03:37 GMT
- Title: ExtremeMETA: High-speed Lightweight Image Segmentation Model by Remodeling Multi-channel Metamaterial Imagers
- Authors: Quan Liu, Brandon T. Swartz, Ivan Kravchenko, Jason G. Valentine, Yuankai Huo,
- Abstract summary: We propose a large kernel lightweight segmentation model, ExtremeMETA, based on the ExtremeC3Net.
Results show that the optimized efficient design improved segmentation performance from 92.45 to 95.97 on mIoU while reducing computational FLOPs from 461.07 MMacs to 166.03 MMacs.
- Score: 8.976310466890805
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep neural networks (DNNs) have heavily relied on traditional computational units like CPUs and GPUs. However, this conventional approach brings significant computational burdens, latency issues, and high power consumption, limiting their effectiveness. This has sparked the need for lightweight networks like ExtremeC3Net. On the other hand, there have been notable advancements in optical computational units, particularly with metamaterials, offering the exciting prospect of energy-efficient neural networks operating at the speed of light. Yet, the digital design of metamaterial neural networks (MNNs) faces challenges such as precision, noise, and bandwidth, limiting their application to intuitive tasks and low-resolution images. In this paper, we propose a large kernel lightweight segmentation model, ExtremeMETA. Based on the ExtremeC3Net, the ExtremeMETA maximizes the ability of the first convolution layer by exploring a larger convolution kernel and multiple processing paths. With the proposed large kernel convolution model, we extend the optic neural network application boundary to the segmentation task. To further lighten the computation burden of the digital processing part, a set of model compression methods is applied to improve model efficiency in the inference stage. The experimental results on three publicly available datasets demonstrate that the optimized efficient design improved segmentation performance from 92.45 to 95.97 on mIoU while reducing computational FLOPs from 461.07 MMacs to 166.03 MMacs. The proposed the large kernel lightweight model ExtremeMETA showcases the hybrid design's ability on complex tasks.
Related papers
- Optical training of large-scale Transformers and deep neural networks with direct feedback alignment [48.90869997343841]
We experimentally implement a versatile and scalable training algorithm, called direct feedback alignment, on a hybrid electronic-photonic platform.
An optical processing unit performs large-scale random matrix multiplications, which is the central operation of this algorithm, at speeds up to 1500 TeraOps.
We study the compute scaling of our hybrid optical approach, and demonstrate a potential advantage for ultra-deep and wide neural networks.
arXiv Detail & Related papers (2024-09-01T12:48:47Z) - SparseSpikformer: A Co-Design Framework for Token and Weight Pruning in
Spiking Transformer [12.717450255837178]
Spiking Neural Network (SNN) has the advantages of low power consumption and high energy efficiency.
The most advanced SNN, Spikformer, combines the self-attention module from Transformer with SNN to achieve remarkable performance.
We present SparseSpikformer, a co-design framework aimed at achieving sparsity in Spikformer through token and weight pruning techniques.
arXiv Detail & Related papers (2023-11-15T09:22:52Z) - EPIM: Efficient Processing-In-Memory Accelerators based on Epitome [78.79382890789607]
We introduce the Epitome, a lightweight neural operator offering convolution-like functionality.
On the software side, we evaluate epitomes' latency and energy on PIM accelerators.
We introduce a PIM-aware layer-wise design method to enhance their hardware efficiency.
arXiv Detail & Related papers (2023-11-12T17:56:39Z) - Free-Space Optical Spiking Neural Network [0.0]
We introduce the Free-space Optical deep Spiking Convolutional Neural Network (OSCNN)
This novel approach draws inspiration from computational models of the human eye.
Our results demonstrate promising performance with minimal latency and power consumption compared to their electronic ONN counterparts.
arXiv Detail & Related papers (2023-11-08T09:41:14Z) - Digital Modeling on Large Kernel Metamaterial Neural Network [7.248553563042369]
We propose a large kernel metamaterial neural network (LMNN) that maximizes the digital capacity of the state-of-the-art (SOTA) MNN.
With the proposed LMNN, the cost of the convolutional front-end can be offloaded into fabricated optical hardware.
arXiv Detail & Related papers (2023-07-21T19:07:02Z) - Energy Efficient Hardware Acceleration of Neural Networks with
Power-of-Two Quantisation [0.0]
We show that a hardware neural network accelerator with PoT weights implemented on the Zynq UltraScale + MPSoC ZCU104 FPGA can be at least $1.4x$ more energy efficient than the uniform quantisation version.
arXiv Detail & Related papers (2022-09-30T06:33:40Z) - GLEAM: Greedy Learning for Large-Scale Accelerated MRI Reconstruction [50.248694764703714]
Unrolled neural networks have recently achieved state-of-the-art accelerated MRI reconstruction.
These networks unroll iterative optimization algorithms by alternating between physics-based consistency and neural-network based regularization.
We propose Greedy LEarning for Accelerated MRI reconstruction, an efficient training strategy for high-dimensional imaging settings.
arXiv Detail & Related papers (2022-07-18T06:01:29Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
High-dimension parameter model and large-scale mathematical calculation restrict execution efficiency, especially for Internet of Things (IoT) devices.
We propose a new Deep Reinforcement Learning (DRL)-Soft Actor Critic for discrete (SAC-d), which generates the emphexit point, emphexit point, and emphcompressing bits by soft policy iterations.
Based on the latency and accuracy aware reward design, such an computation can well adapt to the complex environment like dynamic wireless channel and arbitrary processing, and is capable of supporting the 5G URL
arXiv Detail & Related papers (2022-01-09T09:31:50Z) - Learning Frequency-aware Dynamic Network for Efficient Super-Resolution [56.98668484450857]
This paper explores a novel frequency-aware dynamic network for dividing the input into multiple parts according to its coefficients in the discrete cosine transform (DCT) domain.
In practice, the high-frequency part will be processed using expensive operations and the lower-frequency part is assigned with cheap operations to relieve the computation burden.
Experiments conducted on benchmark SISR models and datasets show that the frequency-aware dynamic network can be employed for various SISR neural architectures.
arXiv Detail & Related papers (2021-03-15T12:54:26Z) - FastFlowNet: A Lightweight Network for Fast Optical Flow Estimation [81.76975488010213]
Dense optical flow estimation plays a key role in many robotic vision tasks.
Current networks often occupy large number of parameters and require heavy computation costs.
Our proposed FastFlowNet works in the well-known coarse-to-fine manner with following innovations.
arXiv Detail & Related papers (2021-03-08T03:09:37Z) - Lightweight Residual Densely Connected Convolutional Neural Network [18.310331378001397]
The lightweight residual densely connected blocks are proposed to guaranty the deep supervision, efficient gradient flow, and feature reuse abilities of convolutional neural network.
The proposed method decreases the cost of training and inference processes without using any special hardware-software equipment.
arXiv Detail & Related papers (2020-01-02T17:15:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.