Characterising the Hierarchy of Multi-time Quantum Processes with Classical Memory
- URL: http://arxiv.org/abs/2307.11905v2
- Date: Tue, 16 Apr 2024 03:41:11 GMT
- Title: Characterising the Hierarchy of Multi-time Quantum Processes with Classical Memory
- Authors: Philip Taranto, Marco TĂșlio Quintino, Mio Murao, Simon Milz,
- Abstract summary: We study multi-time quantum processes with memory mechanisms that transmit only classical information forward in time.
We also study two related processes that could also be considered to have classical memory from a structural perspective.
- Score: 1.3749490831384266
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Memory is the fundamental form of temporal complexity: when present but uncontrollable, it manifests as non-Markovian noise; conversely, if controllable, memory can be a powerful resource for information processing. Memory effects arise from/are transmitted via interactions between a system and its environment; as such, they can be either classical or quantum. From a practical standpoint, quantum processes with classical memory promise near-term applicability: they are more powerful than their memoryless counterpart, yet at the same time can be controlled over significant timeframes without being spoiled by decoherence. However, despite practical and foundational value, apart from simple two-time scenarios, the distinction between quantum and classical memory remains unexplored. Here, we analyse multi-time quantum processes with memory mechanisms that transmit only classical information forward in time. Complementing this analysis, we also study two related -- but simpler to characterise -- sets of processes that could also be considered to have classical memory from a structural perspective, and demonstrate that these lead to remarkably distinct phenomena in the multi-time setting. Subsequently, we systematically stratify the full hierarchy of memory effects in quantum mechanics, many levels of which collapse in the two-time setting, making our results genuinely multi-time phenomena.
Related papers
- Theoretical framework for quantum associative memories [0.8437187555622164]
Associative memory refers to the ability to relate a memory with an input and targets the restoration of corrupted patterns.
We develop a comprehensive framework for a quantum associative memory based on open quantum system dynamics.
arXiv Detail & Related papers (2024-08-26T13:46:47Z) - Memory in quantum processes with indefinite time direction and causal order [0.0]
We study the emergence of dynamical memory effects in quantum processes having indefinite time direction and causal order.
We show that neither the quantum time flip nor the quantum switch could induce memory for any of the considered phase-covariant channels.
arXiv Detail & Related papers (2024-02-08T09:57:11Z) - Local disclosure of quantum memory in non-Markovian dynamics [0.0]
Non-Markovian processes may arise in physics due to memory effects of environmental degrees of freedom.
We propose a criterion to test locally for a truly quantum memory.
arXiv Detail & Related papers (2023-10-02T13:47:28Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - A Quantum-Classical Model of Brain Dynamics [62.997667081978825]
Mixed Weyl symbol is used to describe brain processes at the microscopic level.
Electromagnetic fields and phonon modes involved in the processes are treated either classically or semi-classically.
Zero-point quantum effects can be incorporated into numerical simulations by controlling the temperature of each field mode.
arXiv Detail & Related papers (2023-01-17T15:16:21Z) - Quantum Lyapunov exponent in dissipative systems [68.8204255655161]
The out-of-time order correlator (OTOC) has been widely studied in closed quantum systems.
We study the interplay between these two processes.
The OTOC decay rate is closely related to the classical Lyapunov.
arXiv Detail & Related papers (2022-11-11T17:06:45Z) - Quantum associative memory with a single driven-dissipative nonlinear
oscillator [0.0]
We propose a realization of associative memory with a single driven-dissipative quantum oscillator.
The model can improve the storage capacity of discrete neuron-based systems in a large regime.
We show that the associative-memory capacity is inherently related to the existence of a spectral gap in the Liouvillian superoperator.
arXiv Detail & Related papers (2022-05-19T12:00:35Z) - Multimode capacity of atomic-frequency comb quantum memories [48.7576911714538]
Ensemble-based quantum memories are key to developing multiplexed quantum repeaters.
Rare-earth ion doped crystals are main candidates for highly multimode quantum memories.
AFC quantum memory provides large temporal multimode capacity.
arXiv Detail & Related papers (2022-02-24T22:07:01Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Single ion-qubit exceeding one hour coherence time [12.541642079269481]
Long coherence time quantum memory is a major challenge of current quantum technology.
We report a single Yb ion-qubit memory with over one hour coherence time.
arXiv Detail & Related papers (2020-08-01T11:47:07Z) - Entropic Uncertainty Relations and the Quantum-to-Classical transition [77.34726150561087]
We aim to shed some light on the quantum-to-classical transition as seen through the analysis of uncertainty relations.
We employ entropic uncertainty relations to show that it is only by the inclusion of imprecision in our model of macroscopic measurements that we can prepare a system with two simultaneously well-defined quantities.
arXiv Detail & Related papers (2020-03-04T14:01:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.