論文の概要: Emergence of Adaptive Circadian Rhythms in Deep Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2307.12143v1
- Date: Sat, 22 Jul 2023 18:47:18 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-25 17:48:55.027368
- Title: Emergence of Adaptive Circadian Rhythms in Deep Reinforcement Learning
- Title(参考訳): 深層強化学習における適応型概日リズムの創発
- Authors: Aqeel Labash, Florian Fletzer, Daniel Majoral, Raul Vicente
- Abstract要約: 環境の規則性に適応することは、生物が出来事や計画を予測するために重要である。
深部強化学習エージェントにおける概日リズムの出現について検討した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Adapting to regularities of the environment is critical for biological
organisms to anticipate events and plan. A prominent example is the circadian
rhythm corresponding to the internalization by organisms of the $24$-hour
period of the Earth's rotation. In this work, we study the emergence of
circadian-like rhythms in deep reinforcement learning agents. In particular, we
deployed agents in an environment with a reliable periodic variation while
solving a foraging task. We systematically characterize the agent's behavior
during learning and demonstrate the emergence of a rhythm that is endogenous
and entrainable. Interestingly, the internal rhythm adapts to shifts in the
phase of the environmental signal without any re-training. Furthermore, we show
via bifurcation and phase response curve analyses how artificial neurons
develop dynamics to support the internalization of the environmental rhythm.
From a dynamical systems view, we demonstrate that the adaptation proceeds by
the emergence of a stable periodic orbit in the neuron dynamics with a phase
response that allows an optimal phase synchronisation between the agent's
dynamics and the environmental rhythm.
- Abstract(参考訳): 環境の規則性に適応することは、生物が出来事や計画を予測するために重要である。
顕著な例は、地球の自転の24ドルの時間帯の生物による内部化に対応する概日リズムである。
本研究では,深層強化学習エージェントにおける概日リズムの出現について検討する。
特に,飼料処理を解決しながら,信頼できる周期変動のある環境にエージェントを配置した。
学習中のエージェントの行動を体系的に特徴付け,内在的かつ訓練可能なリズムの出現を実証する。
興味深いことに、内部リズムは、再訓練せずに環境信号の位相の変化に適応する。
さらに,バイファーカレーションと位相応答曲線を用いて,人工ニューロンが環境リズムの内部化を支援するためにどのようにダイナミクスを発達させるかを解析した。
動的システムの観点から、適応は、エージェントのダイナミクスと環境リズムの最適な位相同期を可能にする位相応答を用いて、ニューロン力学における安定周期軌道の出現によって進行することを示す。
関連論文リスト
- Neuron: Learning Context-Aware Evolving Representations for Zero-Shot Skeleton Action Recognition [64.56321246196859]
本稿では,dUalスケルトン・セマンティック・セマンティック・セマンティック・セマンティック・シンジスティック・フレームワークを提案する。
まず、時空間進化型マイクロプロトタイプを構築し、動的コンテキスト認識側情報を統合する。
本研究では,空間的圧縮と時間的記憶機構を導入し,空間的時間的マイクロプロトタイプの成長を導く。
論文 参考訳(メタデータ) (2024-11-18T05:16:11Z) - A Simulation Environment for the Neuroevolution of Ant Colony Dynamics [0.0]
創発的集団行動の研究を促進するためのシミュレーション環境を導入する。
現実世界のデータを活用することで、環境はターゲットのアリの跡をシミュレートし、制御可能なエージェントが複製を学ばなければならない。
論文 参考訳(メタデータ) (2024-06-19T01:51:15Z) - Exploring neural oscillations during speech perception via surrogate gradient spiking neural networks [59.38765771221084]
本稿では、ディープラーニングフレームワークと互換性があり、スケーラブルな、生理学的にインスパイアされた音声認識アーキテクチャを提案する。
本研究では, 終末から終末までの勾配降下訓練が, 中枢スパイク神経ネットワークにおける神経振動の出現に繋がることを示す。
本研究は, スパイク周波数適応やリカレント接続などのフィードバック機構が, 認識性能を向上させるために, 神経活動の調節と同期に重要な役割を担っていることを明らかにする。
論文 参考訳(メタデータ) (2024-04-22T09:40:07Z) - Continuous Time Continuous Space Homeostatic Reinforcement Learning
(CTCS-HRRL) : Towards Biological Self-Autonomous Agent [0.12068041242343093]
ホメオスタシス(英: Homeostasis)は、生物が内部バランスを維持する過程である。
ホメオスタティック強化学習(HRRL)フレームワークは、この学習されたホメオスタティックな振る舞いを説明する。
本研究では,HRRLフレームワークを連続的な時間空間環境に進化させ,CTCS-HRRLフレームワークの有効性を検証する。
論文 参考訳(メタデータ) (2024-01-17T06:29:34Z) - Persistent learning signals and working memory without continuous
attractors [6.135577623169029]
準周期的アトラクタは、任意に長い時間的関係の学習を支援することができることを示す。
我々の理論は、人工知能システムの設計に幅広い意味を持っている。
論文 参考訳(メタデータ) (2023-08-24T06:12:41Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - Limits of Entrainment of Circadian Neuronal Networks [0.0]
概日リズムは哺乳類の様々な重要な生理的・行動的過程の中心にある。
本研究では,周波数・義務周期の異なる外部光信号に対する概日同期の限界を決定するために,現代の計算神経科学モデルについて検討する。
論文 参考訳(メタデータ) (2022-08-23T17:57:21Z) - Entanglement and correlations in fast collective neutrino flavor
oscillations [68.8204255655161]
集合ニュートリノ振動は、天体物理学的な設定においてレプトンのフレーバーを輸送する上で重要な役割を担っている。
高速振動を呈する単純多角ジオメトリーにおける平衡外フレーバーのフルダイナミクスについて検討した。
我々はこれらの高速集団モードが同じ動的相転移によって生成されることを示す。
論文 参考訳(メタデータ) (2022-03-05T17:00:06Z) - Continuous Homeostatic Reinforcement Learning for Self-Regulated
Autonomous Agents [0.0]
本研究では,恒常的強化学習理論を空間的・時間的連続環境に拡張することを提案する。
生物に豊富に存在する自己制御機構にインスパイアされ、エージェントの内部状態のダイナミクスのモデルも導入する。
論文 参考訳(メタデータ) (2021-09-14T11:03:58Z) - Continuous Learning and Adaptation with Membrane Potential and
Activation Threshold Homeostasis [91.3755431537592]
本稿では,MPATH(Membrane Potential and Activation Threshold Homeostasis)ニューロンモデルを提案する。
このモデルにより、ニューロンは入力が提示されたときに自動的に活性を調節することで動的平衡の形式を維持することができる。
実験は、モデルがその入力から適応し、継続的に学習する能力を示す。
論文 参考訳(メタデータ) (2021-04-22T04:01:32Z) - Ecological Reinforcement Learning [76.9893572776141]
このような条件下での学習を容易にする環境特性について検討する。
環境の特性が強化学習エージェントのパフォーマンスにどのように影響するかを理解することは、学習を魅力的にする方法でタスクを構造化するのに役立ちます。
論文 参考訳(メタデータ) (2020-06-22T17:55:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。