Attribute Regularized Soft Introspective VAE: Towards Cardiac Attribute
Regularization Through MRI Domains
- URL: http://arxiv.org/abs/2307.12618v2
- Date: Thu, 14 Dec 2023 12:31:59 GMT
- Title: Attribute Regularized Soft Introspective VAE: Towards Cardiac Attribute
Regularization Through MRI Domains
- Authors: Maxime Di Folco and Cosmin Bercea and Julia A. Schnabel
- Abstract summary: We propose the Attributed Soft Introspective VAE (Attri-SIVAE) by incorporating an attribute regularized loss into the Soft-Intro VAE framework.
We evaluate the proposed method on cardiac MRI data from different domains, such as various scanner vendors and acquisition centers.
- Score: 2.4828003234992666
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Deep generative models have emerged as influential instruments for data
generation and manipulation. Enhancing the controllability of these models by
selectively modifying data attributes has been a recent focus. Variational
Autoencoders (VAEs) have shown promise in capturing hidden attributes but often
produce blurry reconstructions. Controlling these attributes through different
imaging domains is difficult in medical imaging. Recently, Soft Introspective
VAE leverage the benefits of both VAEs and Generative Adversarial Networks
(GANs), which have demonstrated impressive image synthesis capabilities, by
incorporating an adversarial loss into VAE training. In this work, we propose
the Attributed Soft Introspective VAE (Attri-SIVAE) by incorporating an
attribute regularized loss, into the Soft-Intro VAE framework. We evaluate
experimentally the proposed method on cardiac MRI data from different domains,
such as various scanner vendors and acquisition centers. The proposed method
achieves similar performance in terms of reconstruction and regularization
compared to the state-of-the-art Attributed regularized VAE but additionally
also succeeds in keeping the same regularization level when tested on a
different dataset, unlike the compared method.
Related papers
- Counterfactual MRI Data Augmentation using Conditional Denoising Diffusion Generative Models [0.0]
Deep learning models in medical imaging face challenges in generalizability and robustness due to variations in image acquisition parameters (IAP)
We introduce a novel method using conditional denoising diffusion generative models (cDDGMs) to generate counterfactual magnetic resonance (MR) images that simulate different IAP without altering patient anatomy.
arXiv Detail & Related papers (2024-10-31T11:29:41Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
This paper introduces a novel lightweight multi-level adaptation and comparison framework to repurpose the CLIP model for medical anomaly detection.
Our approach integrates multiple residual adapters into the pre-trained visual encoder, enabling a stepwise enhancement of visual features across different levels.
Our experiments on medical anomaly detection benchmarks demonstrate that our method significantly surpasses current state-of-the-art models.
arXiv Detail & Related papers (2024-03-19T09:28:19Z) - RIDE: Self-Supervised Learning of Rotation-Equivariant Keypoint
Detection and Invariant Description for Endoscopy [83.4885991036141]
RIDE is a learning-based method for rotation-equivariant detection and invariant description.
It is trained in a self-supervised manner on a large curation of endoscopic images.
It sets a new state-of-the-art performance on matching and relative pose estimation tasks.
arXiv Detail & Related papers (2023-09-18T08:16:30Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - Compressed Sensing MRI Reconstruction Regularized by VAEs with
Structured Image Covariance [7.544757765701024]
This paper investigates how generative models, trained on ground-truth images, can be used changesas priors for inverse problems.
We utilize variational autoencoders (VAEs) that generate not only an image but also a covariance uncertainty matrix for each image.
We compare our proposed learned regularization against other unlearned regularization approaches and unsupervised and supervised deep learning methods.
arXiv Detail & Related papers (2022-10-26T09:51:49Z) - Attri-VAE: attribute-based, disentangled and interpretable
representations of medical images with variational autoencoders [0.5451140334681147]
We propose a VAE approach that includes an attribute regularization term to associate clinical and medical imaging attributes with different regularized dimensions in the generated latent space.
The proposed model provided an excellent trade-off between reconstruction fidelity, disentanglement, and interpretability, outperforming state-of-the-art VAE approaches.
arXiv Detail & Related papers (2022-03-20T00:19:40Z) - Modality Completion via Gaussian Process Prior Variational Autoencoders
for Multi-Modal Glioma Segmentation [75.58395328700821]
We propose a novel model, Multi-modal Gaussian Process Prior Variational Autoencoder (MGP-VAE), to impute one or more missing sub-modalities for a patient scan.
MGP-VAE can leverage the Gaussian Process (GP) prior on the Variational Autoencoder (VAE) to utilize the subjects/patients and sub-modalities correlations.
We show the applicability of MGP-VAE on brain tumor segmentation where either, two, or three of four sub-modalities may be missing.
arXiv Detail & Related papers (2021-07-07T19:06:34Z) - About Explicit Variance Minimization: Training Neural Networks for
Medical Imaging With Limited Data Annotations [2.3204178451683264]
Variance Aware Training (VAT) method exploits this property by introducing the variance error into the model loss function.
We validate VAT on three medical imaging datasets from diverse domains and various learning objectives.
arXiv Detail & Related papers (2021-05-28T21:34:04Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - Unsupervised Bidirectional Cross-Modality Adaptation via Deeply
Synergistic Image and Feature Alignment for Medical Image Segmentation [73.84166499988443]
We present a novel unsupervised domain adaptation framework, named as Synergistic Image and Feature Alignment (SIFA)
Our proposed SIFA conducts synergistic alignment of domains from both image and feature perspectives.
Experimental results on two different tasks demonstrate that our SIFA method is effective in improving segmentation performance on unlabeled target images.
arXiv Detail & Related papers (2020-02-06T13:49:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.