論文の概要: Automatic lobe segmentation using attentive cross entropy and end-to-end
fissure generation
- arxiv url: http://arxiv.org/abs/2307.12634v1
- Date: Mon, 24 Jul 2023 09:16:05 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-25 14:50:35.846446
- Title: Automatic lobe segmentation using attentive cross entropy and end-to-end
fissure generation
- Title(参考訳): 減衰型クロスエントロピーと端端端裂発生を用いた自動葉節分割
- Authors: Qi Su, Na Wang, Jiawen Xie, Yinan Chen, Xiaofan Zhang
- Abstract要約: トレーニング中の肺線維周囲に注意を払う自動肺葉分画フレームワークを提案する。
また, 補助的肺細管分割作業において, エンドツーエンドの肺細管生成手法も導入した。
プライベートデータセットSTLBとパブリックデータセットLUNA16でそれぞれ97.83%と94.75%のダイススコアを達成した。
- 参考スコア(独自算出の注目度): 6.0255364788259165
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The automatic lung lobe segmentation algorithm is of great significance for
the diagnosis and treatment of lung diseases, however, which has great
challenges due to the incompleteness of pulmonary fissures in lung CT images
and the large variability of pathological features. Therefore, we propose a new
automatic lung lobe segmentation framework, in which we urge the model to pay
attention to the area around the pulmonary fissure during the training process,
which is realized by a task-specific loss function. In addition, we introduce
an end-to-end pulmonary fissure generation method in the auxiliary pulmonary
fissure segmentation task, without any additional network branch. Finally, we
propose a registration-based loss function to alleviate the convergence
difficulty of the Dice loss supervised pulmonary fissure segmentation task. We
achieve 97.83% and 94.75% dice scores on our private dataset STLB and public
LUNA16 dataset respectively.
- Abstract(参考訳): この自動肺葉分割法は肺疾患の診断と治療において非常に重要であるが,肺CT像における肺線維の完全性や病理学的特徴の多様性により大きな課題がある。
そこで本研究では,課題特異的損失関数によって実現されたトレーニング過程において,肺線維周囲の領域に注意を払うようモデルに促す,新しい自動肺葉分割フレームワークを提案する。
さらに,補助肺細管分割作業において,追加のネットワーク分岐を伴わないエンドツーエンドの肺細管生成手法を導入する。
最後に,Dice損失管理肺細管分割作業の収束困難を軽減するために,登録に基づく損失関数を提案する。
プライベートデータセットSTLBとパブリックデータセットLUNA16でそれぞれ97.83%と94.75%のダイススコアを達成した。
関連論文リスト
- Shape-aware synthesis of pathological lung CT scans using CycleGAN for enhanced semi-supervised lung segmentation [0.0]
本稿では,画像-画像間翻訳におけるCycleGANの使用を強調した。
既存の真実と一致する偽の病理画像を生成することができる拡張方法を提供する。
本研究の予備的な結果は, 質的, 定量的に有意な改善を示すものである。
論文 参考訳(メタデータ) (2024-05-14T12:45:49Z) - Automatic segmentation of lung findings in CT and application to Long
COVID [38.69538648742266]
S-MEDSegは胸部CT画像における肺病変の正確な分画のための深層学習に基づくアプローチである。
S-MEDSegは、トレーニング済みのEfficientNetバックボーン、双方向機能ピラミッドネットワーク、モダンネットワークの進化を組み合わせたものだ。
論文 参考訳(メタデータ) (2023-10-13T23:42:43Z) - Fuzzy Attention Neural Network to Tackle Discontinuity in Airway
Segmentation [67.19443246236048]
気道セグメンテーションは肺疾患の検査、診断、予後に重要である。
いくつかの小型の気道支線(気管支や終端など)は自動セグメンテーションの難しさを著しく増す。
本稿では,新しいファジィアテンションニューラルネットワークと包括的損失関数を備える,気道セグメンテーションの効率的な手法を提案する。
論文 参考訳(メタデータ) (2022-09-05T16:38:13Z) - What Makes for Automatic Reconstruction of Pulmonary Segments [50.216231776343115]
肺の3次元再構成は肺癌の外科的治療計画において重要な役割を担っている。
しかし, 深層学習の時代には, 肺部分の自動再建は行われていない。
肺セグメント再建のための深部暗黙表面モデルImPulSeを提案する。
論文 参考訳(メタデータ) (2022-07-07T04:24:17Z) - CoRSAI: A System for Robust Interpretation of CT Scans of COVID-19
Patients Using Deep Learning [133.87426554801252]
我々は,深部畳み込み神経網のアンサンブルを用いた肺CTスキャンのセグメンテーションによるアプローチを採用した。
本モデルを用いて, 病変の分類, 患者の動態の評価, 病変による肺の相対体積の推定, 肺の損傷ステージの評価が可能となった。
論文 参考訳(メタデータ) (2021-05-25T12:06:55Z) - Development of a Multi-Task Learning V-Net for Pulmonary Lobar
Segmentation on Computed Tomography and Application to Diseased Lungs [0.19573380763700707]
疾患のある肺領域は、しばしばCT画像に高密度ゾーンを生成し、損傷した葉を特定するアルゴリズムの実行を制限する。
この影響は、肺葉を分節する機械学習手法の改善を動機づけた。
このアプローチは、放射線科医のロバストなツールとして臨床現場で容易に採用することができる。
論文 参考訳(メタデータ) (2021-05-11T17:10:25Z) - Quantification of pulmonary involvement in COVID-19 pneumonia by means
of a cascade oftwo U-nets: training and assessment on multipledatasets using
different annotation criteria [83.83783947027392]
本研究は、新型コロナウイルスの肺病変の同定、セグメント化、定量化のために人工知能(AI)を活用することを目的とする。
2つのU-netのカスケードをベースとした自動解析パイプラインLungQuantシステムを開発した。
LungQuantシステムにおけるCT-Severity Score(CT-SS)の精度も評価した。
論文 参考訳(メタデータ) (2021-05-06T10:21:28Z) - Fibrosis-Net: A Tailored Deep Convolutional Neural Network Design for
Prediction of Pulmonary Fibrosis Progression from Chest CT Images [59.622239796473885]
肺線維症は、回復不能な肺組織スカーリングおよび損傷を引き起こす慢性肺疾患であり、肺容量の進行的減少と既知の治療法がない。
胸部CT画像からの肺線維化進展の予測に適した深部畳み込みニューラルネットワークであるFibrosis-Netを導入する。
論文 参考訳(メタデータ) (2021-03-06T02:16:41Z) - Automatic segmentation of the pulmonary lobes with a 3D u-net and
optimized loss function [0.0]
49データセットを用いて肺葉分画の3D u-netを訓練した。
ローバー境界を強調するために重み付きDice損失関数を導入した。
論文 参考訳(メタデータ) (2020-05-29T21:18:34Z) - Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images [152.34988415258988]
CT画像からの肺感染症の自動検出は、新型コロナウイルスに対処するための従来の医療戦略を強化する大きな可能性を秘めている。
CTスライスから感染領域を分割することは、高い感染特性の変化、感染と正常な組織の間の低強度のコントラストなど、いくつかの課題に直面している。
これらの課題に対処するため, 胸部CTスライスから感染部位を自動的に同定する, 新型のCOVID-19 Deep Lung infection Network (Inf-Net) が提案されている。
論文 参考訳(メタデータ) (2020-04-22T07:30:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。