論文の概要: Automatic segmentation of the pulmonary lobes with a 3D u-net and
optimized loss function
- arxiv url: http://arxiv.org/abs/2006.00083v1
- Date: Fri, 29 May 2020 21:18:34 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-26 23:23:08.835559
- Title: Automatic segmentation of the pulmonary lobes with a 3D u-net and
optimized loss function
- Title(参考訳): 3次元U-netと最適化損失関数を用いた肺葉の自動分節
- Authors: Bianca Lassen-Schmidt, Alessa Hering, Stefan Krass, Hans Meine
- Abstract要約: 49データセットを用いて肺葉分画の3D u-netを訓練した。
ローバー境界を強調するために重み付きDice損失関数を導入した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fully-automatic lung lobe segmentation is challenging due to anatomical
variations, pathologies, and incomplete fissures. We trained a 3D u-net for
pulmonary lobe segmentation on 49 mainly publically available datasets and
introduced a weighted Dice loss function to emphasize the lobar boundaries. To
validate the performance of the proposed method we compared the results to two
other methods. The new loss function improved the mean distance to 1.46 mm
(compared to 2.08 mm for simple loss function without weighting).
- Abstract(参考訳): 肺葉の完全自動分節は解剖学的変化,病理,不完全断裂により困難である。
肺葉分画のための3次元u-netを49個の公開データセットで訓練し,肺葉境界を強調するために重み付きダイス損失関数を導入した。
提案手法の性能を検証するために,提案手法を他の2つの手法と比較した。
新しい損失関数は平均距離を1.46mm(重み付けなしで単純な損失関数で2.08mm)に改善した。
関連論文リスト
- Lung-DETR: Deformable Detection Transformer for Sparse Lung Nodule Anomaly Detection [0.0]
CTスキャン画像の正確な肺結節検出は現実の環境では困難である。
カスタムデータ前処理とデフォルマブル検出変換器(Deformable-DETR)を利用した新しいソリューションを提案する。
7.5mmの最大強度投影(MIP)を用いて、隣接する肺スライスを単一の画像に組み合わせ、スライス数を減らし、間隔を小さくする。
我々のモデルは、94.2%のF1スコア(95.2%のリコール、93.3%の精度)でLUNA16データセットの最先端性能を達成する。
論文 参考訳(メタデータ) (2024-09-08T19:24:38Z) - Automatic lobe segmentation using attentive cross entropy and end-to-end
fissure generation [6.0255364788259165]
トレーニング中の肺線維周囲に注意を払う自動肺葉分画フレームワークを提案する。
また, 補助的肺細管分割作業において, エンドツーエンドの肺細管生成手法も導入した。
プライベートデータセットSTLBとパブリックデータセットLUNA16でそれぞれ97.83%と94.75%のダイススコアを達成した。
論文 参考訳(メタデータ) (2023-07-24T09:16:05Z) - An Efficient and Robust Method for Chest X-Ray Rib Suppression that
Improves Pulmonary Abnormality Diagnosis [0.49998148477760956]
胸部X線(CXR)に対する胸部骨陰影の抑制は肺疾患の診断を改善することが示唆された。
従来のアプローチは、教師なしの物理的および教師なしのディープラーニングモデルに分類される。
本研究では,(1)空間変換勾配場における物理モデルによる最小化によりGT骨影を除去した2段階のトレーニングペアの生成について,一般化可能かつ効率的なワークフローを提案する。
2) 受信したCXRの高速リブ除去のために,ステージ1データセット上でのネットワークトレーニングをフル教師する。
論文 参考訳(メタデータ) (2023-02-19T23:47:02Z) - Adversarial Transformer for Repairing Human Airway Segmentation [7.176060570019899]
本稿では,従来のCT画像とともに事前分割を行い,気道構造の精細化マスクを出力するパッチスケール対向型精細化ネットワークを提案する。
その結果, 7つの測定値から定量的に評価し, 検出された長さ比と検出された枝比の15%以上を達成できた。
論文 参考訳(メタデータ) (2022-10-21T15:20:08Z) - Fuzzy Attention Neural Network to Tackle Discontinuity in Airway
Segmentation [67.19443246236048]
気道セグメンテーションは肺疾患の検査、診断、予後に重要である。
いくつかの小型の気道支線(気管支や終端など)は自動セグメンテーションの難しさを著しく増す。
本稿では,新しいファジィアテンションニューラルネットワークと包括的損失関数を備える,気道セグメンテーションの効率的な手法を提案する。
論文 参考訳(メタデータ) (2022-09-05T16:38:13Z) - What Makes for Automatic Reconstruction of Pulmonary Segments [50.216231776343115]
肺の3次元再構成は肺癌の外科的治療計画において重要な役割を担っている。
しかし, 深層学習の時代には, 肺部分の自動再建は行われていない。
肺セグメント再建のための深部暗黙表面モデルImPulSeを提案する。
論文 参考訳(メタデータ) (2022-07-07T04:24:17Z) - The KFIoU Loss for Rotated Object Detection [115.334070064346]
本稿では,SkewIoU損失とトレンドレベルアライメントを両立できる近似的損失を考案する上で,有効な方法の1つとして論じる。
具体的には、対象をガウス分布としてモデル化し、SkewIoUのメカニズムを本質的に模倣するためにカルマンフィルタを採用する。
KFIoUと呼ばれる新たな損失は実装が容易で、正確なSkewIoUよりもうまく動作する。
論文 参考訳(メタデータ) (2022-01-29T10:54:57Z) - Automatic airway segmentation from Computed Tomography using robust and
efficient 3-D convolutional neural networks [0.0]
胸部CTにおける全自動およびエンドツーエンド最適化気道分割法を提案する。
シンプルで低メモリの3D U-Netをバックボーンとして使用し、大規模な3Dイメージパッチを処理できます。
本手法は誤検出の少ない高度に完全な気道木を抽出できることを示す。
論文 参考訳(メタデータ) (2021-03-30T13:21:02Z) - Inception Convolution with Efficient Dilation Search [121.41030859447487]
拡散畳み込みは、効果的な受容場を制御し、オブジェクトの大規模な分散を処理するための標準的な畳み込みニューラルネットワークの重要な変異体である。
そこで我々は,異なる軸,チャネル,層間の独立な拡散を有する拡張畳み込みの新たな変異体,すなわち開始(拡張)畳み込みを提案する。
本稿では,データに複雑なインセプション・コンボリューションを適合させる実用的な手法を探索し,統計的最適化に基づく簡易かつ効果的な拡張探索アルゴリズム(EDO)を開発した。
論文 参考訳(メタデータ) (2020-12-25T14:58:35Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
CTスライスにおける普遍的病変検出のための3Dコンテキスト強化2D特徴を効率的に抽出するための修飾擬似3次元特徴ピラミッドネットワーク(MP3D FPN)を提案する。
新たな事前学習手法により,提案したMP3D FPNは,DeepLesionデータセット上での最先端検出性能を実現する。
提案された3Dプリトレーニングウェイトは、他の3D医療画像分析タスクのパフォーマンスを高めるために使用できる。
論文 参考訳(メタデータ) (2020-12-16T07:11:16Z) - GarNet++: Improving Fast and Accurate Static3D Cloth Draping by
Curvature Loss [89.96698250086064]
仮想3次元体上にテンプレート布を視覚的に可視的に描画する2ストリームディープネットワークモデルを提案する。
我々のネットワークは、計算時間を桁違いに減らしながら、物理ベースシミュレーション(PBS)法を模倣することを学ぶ。
身体形状とポーズの異なる4種類の衣服の枠組みを検証した。
論文 参考訳(メタデータ) (2020-07-20T13:40:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。