論文の概要: Global k-Space Interpolation for Dynamic MRI Reconstruction using Masked
Image Modeling
- arxiv url: http://arxiv.org/abs/2307.12672v1
- Date: Mon, 24 Jul 2023 10:20:14 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-25 14:42:01.613122
- Title: Global k-Space Interpolation for Dynamic MRI Reconstruction using Masked
Image Modeling
- Title(参考訳): 仮面画像モデリングを用いた動的MRI再構成のためのグローバルk空間補間
- Authors: Jiazhen Pan, Suprosanna Shit, \"Ozg\"un Turgut, Wenqi Huang, Hongwei
Bran Li, Nil Stolt-Ans\'o, Thomas K\"ustner, Kerstin Hammernik, Daniel
Rueckert
- Abstract要約: ダイナミックMRI(Dynamic Magnetic Imaging)では、k空間はスキャン時間に制限があるためアンサンプされることが多い。
我々は,k-GINと呼ばれるトランスフォーマーベースのk空間グローバル補間ネットワークを提案する。
我々のk-GINは、2D+t k空間の低周波成分と高周波成分のグローバル依存関係を学習し、アンサンプされたデータを補間する。
- 参考スコア(独自算出の注目度): 7.777821407575998
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In dynamic Magnetic Resonance Imaging (MRI), k-space is typically
undersampled due to limited scan time, resulting in aliasing artifacts in the
image domain. Hence, dynamic MR reconstruction requires not only modeling
spatial frequency components in the x and y directions of k-space but also
considering temporal redundancy. Most previous works rely on image-domain
regularizers (priors) to conduct MR reconstruction. In contrast, we focus on
interpolating the undersampled k-space before obtaining images with Fourier
transform. In this work, we connect masked image modeling with k-space
interpolation and propose a novel Transformer-based k-space Global
Interpolation Network, termed k-GIN. Our k-GIN learns global dependencies among
low- and high-frequency components of 2D+t k-space and uses it to interpolate
unsampled data. Further, we propose a novel k-space Iterative Refinement Module
(k-IRM) to enhance the high-frequency components learning. We evaluate our
approach on 92 in-house 2D+t cardiac MR subjects and compare it to MR
reconstruction methods with image-domain regularizers. Experiments show that
our proposed k-space interpolation method quantitatively and qualitatively
outperforms baseline methods. Importantly, the proposed approach achieves
substantially higher robustness and generalizability in cases of
highly-undersampled MR data.
- Abstract(参考訳): 動的磁気共鳴イメージング(mri)では、k空間は通常走査時間の制限によりアンサンプされ、画像領域内のアーティファクトをエイリアスする。
したがって、動的MR再構成は、k空間のx方向とy方向の空間周波数成分をモデル化するだけでなく、時間的冗長性も考慮する必要がある。
以前の作品の多くは、mr再構成を行うために画像領域正規化器(prior)に依存している。
対照的に、フーリエ変換で画像を得る前に、アンサンプリングされたk空間を補間することに集中する。
本研究では,マスク付き画像モデリングとk空間補間を結合し,k-GINと呼ばれるトランスフォーマーベースのk空間グローバル補間ネットワークを提案する。
我々のk-ginは、2d+t k-空間の低周波および高周波成分間のグローバル依存性を学習し、非サンプリングデータの補間に用いる。
さらに、高周波コンポーネント学習を強化するため、新しいk空間イテレーティブリファインメントモジュール(k-IRM)を提案する。
92例の2d+t心筋mrに対するアプローチを評価し,mri再建法と画像領域調整法との比較を行った。
実験により,提案するk空間補間法がベースライン法を定量的に定性的に上回ることを示した。
重要な点として, 提案手法は, 高信頼mrデータの場合のロバスト性, 一般化性が大幅に向上する。
関連論文リスト
- Autoregressive Image Diffusion: Generation of Image Sequence and Application in MRI [2.0318411357438086]
生成モデルは画像分布を学習し、アンサンプされたk空間データから高品質な画像の再構成に使用できる。
画像系列に対する自己回帰画像拡散(AID)モデルを提案し,それを後部MRI再構成のサンプリングに用いた。
その結果,AIDモデルは逐次コヒーレントな画像列を確実に生成できることがわかった。
論文 参考訳(メタデータ) (2024-05-23T08:57:10Z) - IMJENSE: Scan-specific Implicit Representation for Joint Coil
Sensitivity and Image Estimation in Parallel MRI [11.159664312706704]
IMJENSEは、並列MRI再構成を改善するためのスキャン特異的暗黙の神経表現に基づく方法である。
IMJENSEは、MRI画像とコイル感度の強力な連続表現と共同推定により、従来の画像やk空間領域再構成アルゴリズムよりも優れた性能を発揮する。
論文 参考訳(メタデータ) (2023-11-21T07:24:11Z) - Robust Depth Linear Error Decomposition with Double Total Variation and
Nuclear Norm for Dynamic MRI Reconstruction [15.444386058967579]
Compressed Sensing (CS) に基づく動的MRI k-space 再構成にはまだ問題がある。
本稿では,高アンダーサンプリングフーリエ変換(DFT)を用いた高低レート動的MRI再構成モデルを提案する。
動的MRIデータに対する実験は、再構成精度と時間複雑性の両方の観点から、優れた性能を示す。
論文 参考訳(メタデータ) (2023-10-23T13:34:59Z) - ReconFormer: Accelerated MRI Reconstruction Using Recurrent Transformer [60.27951773998535]
本稿では,MRI再構成のためのリカレントトランスモデルである textbfReconFormer を提案する。
高度にアンダーサンプリングされたk空間データから高純度磁気共鳴像を反復的に再構成することができる。
パラメータ効率が向上し,最先端手法よりも大幅に向上したことを示す。
論文 参考訳(メタデータ) (2022-01-23T21:58:19Z) - Spatial-Separated Curve Rendering Network for Efficient and
High-Resolution Image Harmonization [59.19214040221055]
本稿では,空間分離型曲線描画ネットワーク(S$2$CRNet)を提案する。
提案手法は従来の手法と比較して90%以上のパラメータを減少させる。
提案手法は,既存の手法よりも10ドル以上高速な高解像度画像をリアルタイムにスムーズに処理することができる。
論文 参考訳(メタデータ) (2021-09-13T07:20:16Z) - Multi-Modal MRI Reconstruction with Spatial Alignment Network [51.74078260367654]
臨床実践では、複数のコントラストを持つMRIが1つの研究で取得されるのが普通である。
近年の研究では、異なるコントラストやモダリティの冗長性を考慮すると、k空間にアンダーサンプリングされたMRIの目標モダリティは、完全にサンプリングされたシーケンスの助けを借りてよりよく再構成できることが示されている。
本稿では,空間アライメントネットワークと再構成を統合し,再構成対象のモダリティの質を向上させる。
論文 参考訳(メタデータ) (2021-08-12T08:46:35Z) - Dual-Octave Convolution for Accelerated Parallel MR Image Reconstruction [75.35200719645283]
本稿では,実物と虚構の両方から,多次元空間周波数特徴を学習可能なDual-Octave Convolution(Dual-OctConv)を提案する。
オクターブ畳み込みによる複雑な操作を改質することで、MR画像のよりリッチな表現を捉える強力な能力を示す。
論文 参考訳(メタデータ) (2021-04-12T10:51:05Z) - Joint Frequency and Image Space Learning for MRI Reconstruction and
Analysis [7.821429746599738]
本稿では、周波数空間データから再構成するための汎用的なビルディングブロックとして、周波数と画像の特徴表現を明示的に組み合わせたニューラルネットワーク層が利用できることを示す。
提案した共同学習方式により、周波数空間に固有のアーティファクトの補正と画像空間表現の操作を両立させ、ネットワークのすべての層でコヒーレントな画像構造を再構築することができる。
論文 参考訳(メタデータ) (2020-07-02T23:54:46Z) - Kullback-Leibler Divergence-Based Fuzzy $C$-Means Clustering
Incorporating Morphological Reconstruction and Wavelet Frames for Image
Segmentation [152.609322951917]
そこで我々は,厳密なウェーブレットフレーム変換と形態的再構成操作を組み込むことで,Kulback-Leibler (KL) 発散に基づくFuzzy C-Means (FCM) アルゴリズムを考案した。
提案アルゴリズムはよく機能し、他の比較アルゴリズムよりもセグメンテーション性能が優れている。
論文 参考訳(メタデータ) (2020-02-21T05:19:10Z) - Residual-Sparse Fuzzy $C$-Means Clustering Incorporating Morphological
Reconstruction and Wavelet frames [146.63177174491082]
Fuzzy $C$-Means (FCM)アルゴリズムは、形態的再構成操作とタイトウェーブレットフレーム変換を組み込んでいる。
特徴集合とその理想値の間の残差に対して$ell_0$正規化項を付与することにより、改良されたFCMアルゴリズムを提案する。
合成, 医用, カラー画像に対する実験結果から, 提案アルゴリズムは効率的かつ効率的であり, 他のアルゴリズムよりも優れていた。
論文 参考訳(メタデータ) (2020-02-14T10:00:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。