Industrial Segment Anything -- a Case Study in Aircraft Manufacturing,
Intralogistics, Maintenance, Repair, and Overhaul
- URL: http://arxiv.org/abs/2307.12674v1
- Date: Mon, 24 Jul 2023 10:24:13 GMT
- Title: Industrial Segment Anything -- a Case Study in Aircraft Manufacturing,
Intralogistics, Maintenance, Repair, and Overhaul
- Authors: Keno Moenck, Arne Wendt, Philipp Pr\"unte, Julian Koch, Arne Sahrhage,
Johann Gierecker, Ole Schmedemann, Falko K\"ahler, Dirk Holst, Martin Gomse,
Thorsten Sch\"uppstuhl, Daniel Schoepflin
- Abstract summary: Recent advantages in research around Vision Foundation Models (VFM) opened a new area of tasks and models with high generalization capabilities.
This paper contributes here by surveying applications of the SAM in aircraft production-specific use cases.
- Score: 1.7183906167272582
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Deploying deep learning-based applications in specialized domains like the
aircraft production industry typically suffers from the training data
availability problem. Only a few datasets represent non-everyday objects,
situations, and tasks. Recent advantages in research around Vision Foundation
Models (VFM) opened a new area of tasks and models with high generalization
capabilities in non-semantic and semantic predictions. As recently demonstrated
by the Segment Anything Project, exploiting VFM's zero-shot capabilities is a
promising direction in tackling the boundaries spanned by data, context, and
sensor variety. Although, investigating its application within specific domains
is subject to ongoing research. This paper contributes here by surveying
applications of the SAM in aircraft production-specific use cases. We include
manufacturing, intralogistics, as well as maintenance, repair, and overhaul
processes, also representing a variety of other neighboring industrial domains.
Besides presenting the various use cases, we further discuss the injection of
domain knowledge.
Related papers
- Machine Learning Operations: A Mapping Study [0.0]
This article discusses the issues that exist in several components of the MLOps pipeline.
A systematic mapping study is performed to identify the challenges that arise in the MLOps system categorized by different focus areas.
The main value of this work is it maps distinctive challenges in MLOps along with the recommended solutions outlined in our study.
arXiv Detail & Related papers (2024-09-28T17:17:40Z) - DG-PIC: Domain Generalized Point-In-Context Learning for Point Cloud Understanding [41.49771026674969]
We introduce a novel, practical, multi-domain multi-task setting, handling multiple domains and multiple tasks within one unified model for domain generalized point cloud understanding.
Our DG-PIC does not require any model updates during the testing and can handle unseen domains and multiple tasks, textiti.e., point cloud reconstruction, denoising, and registration, within one unified model.
arXiv Detail & Related papers (2024-07-11T18:21:40Z) - Industrial Language-Image Dataset (ILID): Adapting Vision Foundation Models for Industrial Settings [0.0]
We introduce a pipeline to generate the Industrial Language-Image dataset (ILID) based on web-crawled data.
We demonstrate effective self-supervised transfer learning and discussing downstream tasks after training on the cheaply acquired ILID.
arXiv Detail & Related papers (2024-06-14T00:06:52Z) - IPAD: Industrial Process Anomaly Detection Dataset [71.39058003212614]
Video anomaly detection (VAD) is a challenging task aiming to recognize anomalies in video frames.
We propose a new dataset, IPAD, specifically designed for VAD in industrial scenarios.
This dataset covers 16 different industrial devices and contains over 6 hours of both synthetic and real-world video footage.
arXiv Detail & Related papers (2024-04-23T13:38:01Z) - Knowledge Plugins: Enhancing Large Language Models for Domain-Specific
Recommendations [50.81844184210381]
We propose a general paradigm that augments large language models with DOmain-specific KnowledgE to enhance their performance on practical applications, namely DOKE.
This paradigm relies on a domain knowledge extractor, working in three steps: 1) preparing effective knowledge for the task; 2) selecting the knowledge for each specific sample; and 3) expressing the knowledge in an LLM-understandable way.
arXiv Detail & Related papers (2023-11-16T07:09:38Z) - Large Models for Time Series and Spatio-Temporal Data: A Survey and
Outlook [95.32949323258251]
Temporal data, notably time series andtemporal-temporal data, are prevalent in real-world applications.
Recent advances in large language and other foundational models have spurred increased use in time series andtemporal data mining.
arXiv Detail & Related papers (2023-10-16T09:06:00Z) - Explore-Instruct: Enhancing Domain-Specific Instruction Coverage through
Active Exploration [64.58185031596169]
Explore-Instruct is a novel approach to enhance the data coverage to be used in domain-specific instruction-tuning.
Our data-centric analysis validates the effectiveness of this proposed approach in improving domain-specific instruction coverage.
Our findings offer a promising opportunity to improve instruction coverage, especially in domain-specific contexts.
arXiv Detail & Related papers (2023-10-13T15:03:15Z) - A Comprehensive Survey on Applications of Transformers for Deep Learning
Tasks [60.38369406877899]
Transformer is a deep neural network that employs a self-attention mechanism to comprehend the contextual relationships within sequential data.
transformer models excel in handling long dependencies between input sequence elements and enable parallel processing.
Our survey encompasses the identification of the top five application domains for transformer-based models.
arXiv Detail & Related papers (2023-06-11T23:13:51Z) - Explainable Predictive Maintenance [6.274171448205146]
This position paper highlights the gap between existing XAI methodologies and the specific requirements for explanations within industrial applications.
We provide an overview of predictive maintenance tasks and accentuate the need and varying purposes for corresponding explanations.
We then list and describe XAI techniques commonly employed in the literature, discussing their suitability for PdM tasks.
arXiv Detail & Related papers (2023-06-08T11:42:47Z) - Domain Specialization as the Key to Make Large Language Models Disruptive: A Comprehensive Survey [100.24095818099522]
Large language models (LLMs) have significantly advanced the field of natural language processing (NLP)
They provide a highly useful, task-agnostic foundation for a wide range of applications.
However, directly applying LLMs to solve sophisticated problems in specific domains meets many hurdles.
arXiv Detail & Related papers (2023-05-30T03:00:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.