論文の概要: One for Multiple: Physics-informed Synthetic Data Boosts Generalizable
Deep Learning for Fast MRI Reconstruction
- arxiv url: http://arxiv.org/abs/2307.13220v1
- Date: Tue, 25 Jul 2023 03:11:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-26 18:22:40.985569
- Title: One for Multiple: Physics-informed Synthetic Data Boosts Generalizable
Deep Learning for Fast MRI Reconstruction
- Title(参考訳): 物理インフォームド・シンセティック・データによる高速MRI画像再構成のための一般化可能な深層学習
- Authors: Zi Wang, Xiaotong Yu, Chengyan Wang, Weibo Chen, Jiazheng Wang,
Ying-Hua Chu, Hongwei Sun, Rushuai Li, Peiyong Li, Fan Yang, Haiwei Han,
Taishan Kang, Jianzhong Lin, Chen Yang, Shufu Chang, Zhang Shi, Sha Hua, Yan
Li, Juan Hu, Liuhong Zhu, Jianjun Zhou, Meijing Lin, Jiefeng Guo, Congbo Cai,
Zhong Chen, Di Guo, Xiaobo Qu
- Abstract要約: 高速MRIにおける画像再構成のための強力なツールとしてディープラーニングが登場した。
PISFは、訓練された1つのモデルのみを用いて、マルチシナリオMRI再構成のための一般化可能なDLを可能にする最初の方法である。
- 参考スコア(独自算出の注目度): 26.380964812293136
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Magnetic resonance imaging (MRI) is a principal radiological modality that
provides radiation-free, abundant, and diverse information about the whole
human body for medical diagnosis, but suffers from prolonged scan time. The
scan time can be significantly reduced through k-space undersampling but the
introduced artifacts need to be removed in image reconstruction. Although deep
learning (DL) has emerged as a powerful tool for image reconstruction in fast
MRI, its potential in multiple imaging scenarios remains largely untapped. This
is because not only collecting large-scale and diverse realistic training data
is generally costly and privacy-restricted, but also existing DL methods are
hard to handle the practically inevitable mismatch between training and target
data. Here, we present a Physics-Informed Synthetic data learning framework for
Fast MRI, called PISF, which is the first to enable generalizable DL for
multi-scenario MRI reconstruction using solely one trained model. For a 2D
image, the reconstruction is separated into many 1D basic problems and starts
with the 1D data synthesis, to facilitate generalization. We demonstrate that
training DL models on synthetic data, integrated with enhanced learning
techniques, can achieve comparable or even better in vivo MRI reconstruction
compared to models trained on a matched realistic dataset, reducing the demand
for real-world MRI data by up to 96%. Moreover, our PISF shows impressive
generalizability in multi-vendor multi-center imaging. Its excellent
adaptability to patients has been verified through 10 experienced doctors'
evaluations. PISF provides a feasible and cost-effective way to markedly boost
the widespread usage of DL in various fast MRI applications, while freeing from
the intractable ethical and practical considerations of in vivo human data
acquisitions.
- Abstract(参考訳): 磁気共鳴イメージング(MRI)は、放射線のない、豊富で多様な医療診断のための人体全体に関する情報を提供する主要な放射線モダリティであるが、長期のスキャン時間に悩まされている。
スキャン時間はk空間のアンダーサンプリングによって大幅に削減できるが、導入されたアーティファクトは画像再構成時に取り除く必要がある。
高速MRIにおける画像再構成のための強力なツールとしてディープラーニング(DL)が登場したが、複数の画像シナリオにおけるその潜在性はいまだに未完成である。
これは、大規模で多様なリアルなトレーニングデータの収集は一般的にコストがかかりプライバシーが制限されるだけでなく、既存のDL手法ではトレーニングとターゲットデータのミスマッチが事実上避けられないためである。
本稿では,高速MRIのための物理インフォームド・シンセティック・データ学習フレームワークPISFについて述べる。
2D画像の場合、再構成は多くの1D基本問題に分離され、1Dデータ合成から始まり、一般化を容易にする。
実世界のMRIデータの需要を最大96%減少させるため, 合成データを用いたDLモデルの訓練は, 一致した現実的データセットで訓練されたモデルと比較して, 同等あるいはさらに優れた生体内MRI再構成を実現することができることを示した。
さらに, PISFはマルチベンダマルチセンターイメージングにおいて顕著な一般化性を示した。
患者への適応性は,経験豊富な医師10名の評価により検証された。
PISFは、様々な高速MRIアプリケーションにおけるDLの広範な使用を著しく向上させるとともに、生体内データ取得の難易度の高い倫理的および実践的な考慮から解放する、実現可能で費用対効果の高い方法を提供する。
関連論文リスト
- Training Physics-Driven Deep Learning Reconstruction without Raw Data Access for Equitable Fast MRI [2.512491726995032]
物理駆動型ディープラーニング(PD-DL)アプローチは、高速磁気共鳴画像(MRI)スキャンの再構築に人気がある。
PD-DLは、既存の高速MRI技術と比較して加速率が高いが、特定のMRIセンター以外での使用は限られている。
それらの展開の障害の1つは、トレーニングセットでよく表現されていない病理や集団への一般化の難しさである。
CUPIDは、生のk空間データアクセスを必要とするよく確立されたPD-DLトレーニング戦略と同じような品質を実現する。
論文 参考訳(メタデータ) (2024-11-20T03:53:41Z) - MRPD: Undersampled MRI reconstruction by prompting a large latent diffusion model [18.46762698682188]
大規模な潜伏拡散モデル(MRPD)を応用したMRI再建のための新しい枠組みを提案する。
教師なし再構成のために、MSSamplerはランダム位相変調されたハード・トゥ・ソフト制御でLLDMを誘導する。
FastMRIとIXIの実験では、MRPDがMRIデータベースのないシナリオとデータベースが利用可能なシナリオの両方をサポートする唯一のモデルであることが示されている。
論文 参考訳(メタデータ) (2024-02-16T11:54:34Z) - fMRI-PTE: A Large-scale fMRI Pretrained Transformer Encoder for
Multi-Subject Brain Activity Decoding [54.17776744076334]
本稿では,fMRI事前学習のための革新的オートエンコーダであるfMRI-PTEを提案する。
我々のアプローチでは、fMRI信号を統合された2次元表現に変換し、次元の整合性を確保し、脳の活動パターンを保存する。
コントリビューションには、fMRI-PTEの導入、革新的なデータ変換、効率的なトレーニング、新しい学習戦略、そして我々のアプローチの普遍的な適用性が含まれる。
論文 参考訳(メタデータ) (2023-11-01T07:24:22Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
深層学習(DL)モデルは、再構成画像を入力として、複数の疾患の診断において最先端のパフォーマンスを達成した。
DLモデルは、トレーニングとテストフェーズ間の入力データ分布の変化につながるため、さまざまなアーティファクトに敏感である。
本稿では,グループ正規化やレイヤ正規化といった他の正規化手法を用いて,画像のさまざまなアーチファクトに対して,モデル性能にロバスト性を注入することを提案する。
論文 参考訳(メタデータ) (2023-06-23T03:09:03Z) - Iterative Data Refinement for Self-Supervised MR Image Reconstruction [18.02961646651716]
自己教師型MR画像再構成のためのデータ改質フレームワークを提案する。
まず,自己教師付き手法と教師付き手法のパフォーマンスギャップの原因を解析する。
そして、このデータバイアスを低減するために、効果的な自己教師付きトレーニングデータ精錬法を設計する。
論文 参考訳(メタデータ) (2022-11-24T06:57:16Z) - Physics-informed Deep Diffusion MRI Reconstruction with Synthetic Data:
Break Training Data Bottleneck in Artificial Intelligence [27.618154067389018]
拡散磁気共鳴イメージング(MRI)は、非侵襲的な水分子の動き検出のための唯一の画像モダリティである。
マルチショット技術によって得られたDWIは,高分解能,信号対雑音比,幾何歪みの低減を実現している。
これらのアーティファクトは将来的に除去できないため、アーティファクトフリーのトレーニングラベルが欠落する。
高品質なペアリング学習データを合成するための物理インフォームド深部DWI再構成法(PIDD)を提案する。
論文 参考訳(メタデータ) (2022-10-20T16:27:54Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
MRI観察行列を用いて,反復型MGDUNアルゴリズムを新しいモデル誘導深部展開ネットワークに展開する方法を示す。
本稿では,医療画像SR再構成のためのモデルガイド型解釈可能なDeep Unfolding Network(MGDUN)を提案する。
論文 参考訳(メタデータ) (2022-09-15T03:58:30Z) - Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and
Methodologies from CNN, GAN to Attention and Transformers [72.047680167969]
本稿では,畳み込みニューラルネットワークや生成的敵ネットワークに基づく手法を含む,高速MRIのためのディープラーニングに基づくデータ駆動手法を紹介する。
MRI加速のための物理とデータ駆動モデルの結合に関する研究について詳述する。
最後に, 臨床応用について紹介し, マルチセンター・マルチスキャナー研究における高速MRI技術におけるデータ調和の重要性と説明可能なモデルについて述べる。
論文 参考訳(メタデータ) (2022-04-01T22:48:08Z) - Multi-institutional Collaborations for Improving Deep Learning-based
Magnetic Resonance Image Reconstruction Using Federated Learning [62.17532253489087]
深層学習法はmr画像再構成において優れた性能をもたらすことが示されている。
これらの方法は、高い取得コストと医療データプライバシー規制のために収集および共有が困難である大量のデータを必要とします。
我々は,異なる施設で利用可能なmrデータを活用し,患者のプライバシーを保ちながら,連合学習(fl)ベースのソリューションを提案する。
論文 参考訳(メタデータ) (2021-03-03T03:04:40Z) - Progressively Volumetrized Deep Generative Models for Data-Efficient
Contextual Learning of MR Image Recovery [0.0]
生成モデル(ProvoGAN)のための新しいプログレッシブボリューム化戦略を導入する。
ProvoGANは、複雑なボリューム画像復元タスクを、個別の直交次元にわたってタスク最適化された逐次断面積マッピングに分解する。
メインストリームのMRI再構成と合成タスクに関する総合的なデモでは、ProvoGANは最先端のボリュームモデルとクロスセクションモデルよりも優れたパフォーマンスを示す。
論文 参考訳(メタデータ) (2020-11-27T18:55:56Z) - Multifold Acceleration of Diffusion MRI via Slice-Interleaved Diffusion
Encoding (SIDE) [50.65891535040752]
本稿では,Slice-Interleaved Diffusionと呼ばれる拡散符号化方式を提案する。
SIDEは、拡散重み付き(DW)画像ボリュームを異なる拡散勾配で符号化したスライスでインターリーブする。
また,高いスライスアンサンプデータからDW画像を効果的に再構成するためのディープラーニングに基づく手法を提案する。
論文 参考訳(メタデータ) (2020-02-25T14:48:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。