Continuous sensing and parameter estimation with the boundary time-crystal
- URL: http://arxiv.org/abs/2307.13277v2
- Date: Mon, 12 Aug 2024 08:40:19 GMT
- Title: Continuous sensing and parameter estimation with the boundary time-crystal
- Authors: Albert Cabot, Federico Carollo, Igor Lesanovsky,
- Abstract summary: A boundary time-crystal is a quantum many-body system whose dynamics is governed by the competition between coherent driving and collective dissipation.
We show that the best achievable sensitivity is proportional to $sqrtT N$, i.e., it follows the standard quantum limit in time and Heisenberg scaling in the particle number.
We demonstrate that the standard quantum limit can be surpassed by cascading two time-crystals, where the quantum trajectories of one time-crystal are used as input for the other one.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A boundary time-crystal is a quantum many-body system whose dynamics is governed by the competition between coherent driving and collective dissipation. It is composed of $N$ two-level systems and features a transition between a stationary phase and an oscillatory one. The fact that the system is open allows to continuously monitor its quantum trajectories and to analyze their dependence on parameter changes. This enables the realization of a sensing device whose performance we investigate as a function of the monitoring time $T$ and of the system size $N$. We find that the best achievable sensitivity is proportional to $\sqrt{T} N$, i.e., it follows the standard quantum limit in time and Heisenberg scaling in the particle number. This theoretical scaling can be achieved in the oscillatory time-crystal phase and it is rooted in emergent quantum correlations. The main challenge is, however, to tap this capability in a measurement protocol that is experimentally feasible. We demonstrate that the standard quantum limit can be surpassed by cascading two time-crystals, where the quantum trajectories of one time-crystal are used as input for the other one.
Related papers
- Prethermal Floquet time crystals in chiral multiferroic chains and applications as quantum sensors of AC fields [41.94295877935867]
We study the emergence of prethermal Floquet Time Crystal (pFTC) in disordered multiferroic chains.
We derive the phase diagram of the model, characterizing the magnetization, entanglement, and coherence dynamics of the system.
We also explore the application of the pFTC as quantum sensors of AC fields.
arXiv Detail & Related papers (2024-10-23T03:15:57Z) - Finite Pulse-Time Effects in Long-Baseline Quantum Clock Interferometry [45.73541813564926]
We study the interplay of the quantum center-of-mass $-$ that can become delocalized $-$ together with the internal clock transitions.
We show at the example of a Gaussian laser beam that the proposed quantum-clock interferometers are stable against perturbations from varying optical fields.
arXiv Detail & Related papers (2023-09-25T18:00:03Z) - Orthogonality catastrophe and quantum speed limit for dynamical quantum
phase transition [3.8018284259144344]
We show that exact zeros of the Loschmidt echo can exist in finite-size systems for specific discrete values.
We find the possibility of using the quantum speed limit to detect the critical point of a static quantum phase transition.
arXiv Detail & Related papers (2023-08-09T03:48:06Z) - Measurement-induced entanglement and teleportation on a noisy quantum
processor [105.44548669906976]
We investigate measurement-induced quantum information phases on up to 70 superconducting qubits.
We use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases.
Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors.
arXiv Detail & Related papers (2023-03-08T18:41:53Z) - Quantum metrology with boundary time crystals [0.0]
We show that a transition from a symmetry unbroken into a boundary time crystal phase reveals quantum-enhanced sensitivity quantified through quantum Fisher information.
Our scheme is indeed a demonstration of harnessing decoherence for achieving quantum-enhanced sensitivity.
arXiv Detail & Related papers (2023-01-05T15:15:38Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Variational principle for optimal quantum controls in quantum metrology [2.29042212865183]
We develop a variational principle to determine the quantum controls and initial state which optimize the quantum Fisher information.
We find for magnetometry with a time-independent spin chain containing three-body interactions, even when the controls are restricted to one and two-body interaction, that the Heisenberg scaling can still be approximately achieved.
arXiv Detail & Related papers (2021-11-07T16:11:55Z) - Retardation of entanglement decay of two spin qubits by quantum
measurements [0.0]
Two-electron spin subsystem (TESSS) is a prototype system of two electron spin quantum dot (QD) qubits.
We propose a way to counteract the decay of entanglement in TESSS by performing some manipulations on TESSS.
arXiv Detail & Related papers (2021-10-26T16:20:20Z) - Critical Quantum Metrology with Fully-Connected Models: From Heisenberg
to Kibble-Zurek Scaling [0.0]
Phase transitions represent a compelling tool for classical and quantum sensing applications.
Quantum sensors can saturate the Heisenberg scaling in the limit of large probe number and long measurement time.
Our analysis unveils the existence of universal precision-scaling regimes.
arXiv Detail & Related papers (2021-10-08T14:11:54Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.