Retardation of entanglement decay of two spin qubits by quantum
measurements
- URL: http://arxiv.org/abs/2110.13826v1
- Date: Tue, 26 Oct 2021 16:20:20 GMT
- Title: Retardation of entanglement decay of two spin qubits by quantum
measurements
- Authors: Igor Bragar
- Abstract summary: Two-electron spin subsystem (TESSS) is a prototype system of two electron spin quantum dot (QD) qubits.
We propose a way to counteract the decay of entanglement in TESSS by performing some manipulations on TESSS.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study a system of two electron spins each interacting with its small
nuclear spin environment (NSE), which is a prototype system of two electron
spin quantum dot (QD) qubits. We propose a way to counteract the decay of
entanglement in two-electron spin subsystem (TESSS) by performing some
manipulations on TESSS (the subsystem to which experimentalists have an
access), e.g. repeatable quantum projective measurements of TESSS. Unlike in
the quantum Zeno effect, the goal of the proposed manipulations is not to
freeze TESSS in its initial state and to preclude any time evolution of the
state by infinitely frequent quantum measurements. Instead of that, performing
a few cycles of free evolution of the system for some time $\tau$ followed by a
quantum measurement of TESSS with subsequent postselection of TESSS state (the
same as the initial one) produces quantum correlations in NSEs and also
restores the quantum correlations in TESSS. By numerical calculation of the
system evolution (the full density matrix $\hat \rho(t)$), we show that, in
contrast to the fast decay of TESSS entanglement on timescale of the order of
$T_2^*$, application of the proposed manipulation sequence gradually builds up
coherences in the entire system and the rest decay of quantum correlations of
TESSS may be significantly slowed down for specific cycle durations $\tau$ and
numbers of performed cycles.
Related papers
- Harnessing spin-qubit decoherence to probe strongly-interacting quantum systems [0.0]
We employ a single spin qubit to probe a strongly interacting system.
By focusing on the XXZ spin chain, we observe diverse dynamics in the qubit evolution.
This approach reveals the power of small quantum systems to probe the properties of large, strongly correlated quantum systems.
arXiv Detail & Related papers (2024-10-29T12:51:55Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Snapshotting Quantum Dynamics at Multiple Time Points [10.226937603741474]
We propose a method to extract dynamic information from a quantum system at intermediate time points.
We reconstruct a multi-time quasi-probability distribution (QPD) that correctly recovers the probability at the respective time points.
arXiv Detail & Related papers (2022-07-13T10:28:01Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Revealing higher-order light and matter energy exchanges using quantum
trajectories in ultrastrong coupling [0.0]
We extend the formalism of quantum trajectories to open quantum systems with ultrastrong coupling.
We analyze the impact of the chosen unravelling (i.e., how one collects the output field of the system) for the quantum trajectories.
arXiv Detail & Related papers (2021-07-19T11:22:12Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Room Temperature Quantum Coherent Revival in an Ensemble of Artificial
Atoms [0.0]
Control over quantum states, inherent to QCR, together with the dynamical QD properties present an opportunity for practical room temperature building blocks of quantum information processing.
arXiv Detail & Related papers (2020-10-28T19:40:13Z) - Finite-component dynamical quantum phase transitions [0.0]
We show two types of dynamical quantum phase transitions (DQPTs) in a quantum Rabi model.
One refers to distinct phases according to long-time averaged order parameters, the other is focused on the non-analytical behavior emerging in the rate function of the Loschmidt echo.
We find the critical times at which the rate function becomes non-analytical, showing its associated critical exponent as well as the corrections introduced by a finite frequency ratio.
arXiv Detail & Related papers (2020-08-31T17:31:17Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Quantum Zeno effect appears in stages [64.41511459132334]
In the quantum Zeno effect, quantum measurements can block the coherent oscillation of a two level system by freezing its state to one of the measurement eigenstates.
We show that the onset of the Zeno regime is marked by a $textitcascade of transitions$ in the system dynamics as the measurement strength is increased.
arXiv Detail & Related papers (2020-03-23T18:17:36Z) - Jumptime unraveling of Markovian open quantum systems [68.8204255655161]
We introduce jumptime unraveling as a distinct description of open quantum systems.
quantum jump trajectories emerge, physically, from continuous quantum measurements.
We demonstrate that quantum trajectories can also be ensemble-averaged at specific jump counts.
arXiv Detail & Related papers (2020-01-24T09:35:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.