論文の概要: XDLM: Cross-lingual Diffusion Language Model for Machine Translation
- arxiv url: http://arxiv.org/abs/2307.13560v1
- Date: Tue, 25 Jul 2023 15:08:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-26 16:38:30.802727
- Title: XDLM: Cross-lingual Diffusion Language Model for Machine Translation
- Title(参考訳): XDLM:機械翻訳のための言語間拡散言語モデル
- Authors: Linyao Chen, Aosong Feng, Boming Yang, Zihui Li
- Abstract要約: 本稿では,事前学習と微調整の段階からなる機械翻訳のための新しい言語間拡散モデルを提案する。
いくつかの機械翻訳ベンチマークで結果を評価し,拡散ベースラインとトランスフォーマーベースラインを比較検討した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Recently, diffusion models have excelled in image generation tasks and have
also been applied to neural language processing (NLP) for controllable text
generation. However, the application of diffusion models in a cross-lingual
setting is less unexplored. Additionally, while pretraining with diffusion
models has been studied within a single language, the potential of
cross-lingual pretraining remains understudied. To address these gaps, we
propose XDLM, a novel Cross-lingual diffusion model for machine translation,
consisting of pretraining and fine-tuning stages. In the pretraining stage, we
propose TLDM, a new training objective for mastering the mapping between
different languages; in the fine-tuning stage, we build up the translation
system based on the pretrained model. We evaluate the result on several machine
translation benchmarks and outperformed both diffusion and Transformer
baselines.
- Abstract(参考訳): 近年、拡散モデルは画像生成に優れており、制御可能なテキスト生成のためのニューラル言語処理(NLP)にも適用されている。
しかし、言語間セッティングにおける拡散モデルの応用は明らかにされていない。
さらに、拡散モデルによる事前訓練は単一の言語で研究されているが、言語間事前訓練の可能性はまだ検討されていない。
これらのギャップに対処するために,機械翻訳のための新しい言語間拡散モデルであるxdlmを提案する。
事前学習段階では、異なる言語間のマッピングを習得するための新たな学習目標であるTLDMを提案し、微調整段階では、事前学習モデルに基づいて翻訳システムを構築する。
いくつかの機械翻訳ベンチマークで結果を評価し,拡散ベースラインとトランスフォーマーベースラインを比較検討した。
関連論文リスト
- Revisiting Machine Translation for Cross-lingual Classification [91.43729067874503]
この分野のほとんどの研究は、機械翻訳コンポーネントではなく多言語モデルに焦点を当てている。
より強力なMTシステムを用いて、原文のトレーニングと機械翻訳テキストの推論のミスマッチを緩和することにより、翻訳テストは以前想定していたよりも大幅に優れていることを示す。
論文 参考訳(メタデータ) (2023-05-23T16:56:10Z) - DiffusionBERT: Improving Generative Masked Language Models with
Diffusion Models [81.84866217721361]
DiffusionBERTは離散拡散モデルに基づく新しい生成マスク付き言語モデルである。
本稿では,各ステップに付加される雑音の度合いを制御する前方拡散プロセスのための新しいノイズスケジュールを提案する。
非条件テキスト生成の実験では、DiffusionBERTは既存のテキスト拡散モデルよりも大幅に改善されている。
論文 参考訳(メタデータ) (2022-11-28T03:25:49Z) - MSP: Multi-Stage Prompting for Making Pre-trained Language Models Better
Translators [10.557167523009392]
本稿では,事前学習した言語モデルを翻訳タスクに適応させるための,シンプルで軽量な手法であるMulti-Stage Promptingを提案する。
事前学習された言語モデルをより優れた翻訳者にするために,事前学習された言語モデルを介して翻訳過程を3つの段階に分けた。
各段階において、事前訓練された言語モデルを翻訳タスクに適応させるために、異なる連続的なプロンプトを独立して適用する。
論文 参考訳(メタデータ) (2021-10-13T10:06:21Z) - Cross-lingual Transferring of Pre-trained Contextualized Language Models [73.97131976850424]
本稿では,PRLMのための新しい言語間モデル転送フレームワークTreLMを提案する。
シンボルの順序と言語間のシーケンス長の差に対処するため,中間的なTRILayer構造を提案する。
提案手法は,スクラッチから学習した言語モデルに対して,性能と効率の両面で,限られたデータで著しく優れることを示す。
論文 参考訳(メタデータ) (2021-07-27T06:51:13Z) - Improving the Lexical Ability of Pretrained Language Models for
Unsupervised Neural Machine Translation [127.81351683335143]
クロスリンガルプリトレーニングは、2つの言語の語彙的表現と高レベル表現を整列させるモデルを必要とする。
これまでの研究では、これは表現が十分に整合していないためです。
本稿では,語彙レベルの情報で事前学習するバイリンガルマスク言語モデルを,型レベルのクロスリンガルサブワード埋め込みを用いて強化する。
論文 参考訳(メタデータ) (2021-03-18T21:17:58Z) - ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual
Semantics with Monolingual Corpora [21.78571365050787]
ERNIE-Mは、複数の言語の表現をモノリンガルコーパスと整合させる新しいトレーニング手法である。
単言語コーパス上で擬似並列文ペアを生成し、異なる言語間のセマンティックアライメントの学習を可能にする。
実験結果から,ERNIE-Mは既存の言語間モデルよりも優れており,様々な言語間下流タスクに対して新たな最先端結果を提供することがわかった。
論文 参考訳(メタデータ) (2020-12-31T15:52:27Z) - Unsupervised Domain Adaptation of a Pretrained Cross-Lingual Language
Model [58.27176041092891]
最近の研究は、大規模未ラベルテキストに対する言語間言語モデルの事前学習が、大幅な性能向上をもたらすことを示唆している。
本稿では,絡み合った事前学習した言語間表現からドメイン固有の特徴を自動的に抽出する,教師なし特徴分解手法を提案する。
提案モデルでは、相互情報推定を利用して、言語間モデルによって計算された表現をドメイン不変部分とドメイン固有部分に分解する。
論文 参考訳(メタデータ) (2020-11-23T16:00:42Z) - Unsupervised Paraphrasing with Pretrained Language Models [85.03373221588707]
教師なし環境で,事前学習した言語モデルを用いて高品質なパラフレーズを生成する訓練パイプラインを提案する。
提案手法は,タスク適応,自己スーパービジョン,動的ブロッキング(Dynamic Blocking)という新しい復号アルゴリズムから構成される。
提案手法は,Quora Question PairとParaNMTの両方のデータセット上で,最先端の性能を達成できることを示す。
論文 参考訳(メタデータ) (2020-10-24T11:55:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。