論文の概要: Embedding Democratic Values into Social Media AIs via Societal Objective
Functions
- arxiv url: http://arxiv.org/abs/2307.13912v3
- Date: Thu, 15 Feb 2024 00:41:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-16 23:46:24.758514
- Title: Embedding Democratic Values into Social Media AIs via Societal Objective
Functions
- Title(参考訳): 社会目的関数によるソーシャルメディアAIへの民主的価値の埋め込み
- Authors: Chenyan Jia, Michelle S. Lam, Minh Chau Mai, Jeff Hancock, Michael S.
Bernstein
- Abstract要約: 我々は、確立された、審査された社会科学的構成物をAI客観的関数に翻訳する手法を導入する。
我々は、ソーシャルメディア投稿が反民主的態度を促進する程度を推定する民主的な態度モデルを作成する。
本手法は,ソーシャルメディアAIにおける社会的害を軽減するために,社会科学理論と手法に基づく新たな戦略を提案する。
- 参考スコア(独自算出の注目度): 13.903836222333977
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Can we design artificial intelligence (AI) systems that rank our social media
feeds to consider democratic values such as mitigating partisan animosity as
part of their objective functions? We introduce a method for translating
established, vetted social scientific constructs into AI objective functions,
which we term societal objective functions, and demonstrate the method with
application to the political science construct of anti-democratic attitudes.
Traditionally, we have lacked observable outcomes to use to train such models,
however, the social sciences have developed survey instruments and qualitative
codebooks for these constructs, and their precision facilitates translation
into detailed prompts for large language models. We apply this method to create
a democratic attitude model that estimates the extent to which a social media
post promotes anti-democratic attitudes, and test this democratic attitude
model across three studies. In Study 1, we first test the attitudinal and
behavioral effectiveness of the intervention among US partisans (N=1,380) by
manually annotating (alpha=.895) social media posts with anti-democratic
attitude scores and testing several feed ranking conditions based on these
scores. Removal (d=.20) and downranking feeds (d=.25) reduced participants'
partisan animosity without compromising their experience and engagement. In
Study 2, we scale up the manual labels by creating the democratic attitude
model, finding strong agreement with manual labels (rho=.75). Finally, in Study
3, we replicate Study 1 using the democratic attitude model instead of manual
labels to test its attitudinal and behavioral impact (N=558), and again find
that the feed downranking using the societal objective function reduced
partisan animosity (d=.25). This method presents a novel strategy to draw on
social science theory and methods to mitigate societal harms in social media
AIs.
- Abstract(参考訳): ソーシャルメディアフィードをランク付けする人工知能(AI)システムを設計すれば、その目的機能の一部としてパルチザンの敵意を緩和するような民主的価値を考慮できるだろうか?
本稿では, 確立された社会的科学的構成を社会目的関数と呼ぶai目的関数に翻訳する手法を紹介し, 反民主主義的態度の政治科学構築への応用を実証する。
伝統的に、そのようなモデルをトレーニングするための観測可能な成果は得られていないが、社会科学はこれらの構築物に対する調査機器や定性的コードブックを開発し、その精度は大規模言語モデルの詳細なプロンプトへの翻訳を容易にする。
本稿では,ソーシャルメディア投稿が反民主的態度を促進する程度を推定する民主的態度モデルを作成し,この民主的態度モデルを3つの研究で検証する。
研究1では,米国パルチザン間の介入(n=1,380)が,反民主主義的態度スコアを付したソーシャルメディア投稿(アルファ=.895)に手作業で注釈を付け,これらのスコアに基づいて複数のフィードランキング条件をテストし,行動的効果を最初に検証した。
削除(d=.20)と下級のフィード(d=.25)は、参加者の経験やエンゲージメントを損なうことなく、パルチザンの敵意を減らした。
研究2では, 民主的態度モデルを作成し, マニュアルラベルとの強い合意を求めることで, マニュアルラベルをスケールアップする(rho=.75)。
最後に,研究3では,手動ラベルの代わりに民主的態度モデルを用いて研究1を再現し,その姿勢的・行動的影響(N=558)を検証した。
本手法は,ソーシャルメディアAIにおける社会的害を軽減するために,社会科学理論と手法に基づく新たな戦略を提案する。
関連論文リスト
- Learning Goal-oriented Bimanual Dough Rolling Using Dynamic Heterogeneous Graph Based on Human Demonstration [19.74767906744719]
ソフトオブジェクト操作はロボットにとって重要な課題であり、状態表現と操作ポリシー学習に効果的な技術を必要とする。
本研究では,目標指向のソフトオブジェクト操作ポリシーを学習するための動的ヘテロジニアスグラフベースモデルを提案する。
論文 参考訳(メタデータ) (2024-10-15T16:12:00Z) - From Experts to the Public: Governing Multimodal Language Models in Politically Sensitive Video Analysis [48.14390493099495]
本稿では,大規模言語モデル(MM-LLM)の個人的および集団的検討を通じて,ガバナンスについて検討する。
筆者らは,まず10人のジャーナリストにインタビューを行い,専門家によるビデオ解釈のベースライン理解を確立した。第2に,包括的.AIを用いた議論に携わる一般市民114名を対象にした。
論文 参考訳(メタデータ) (2024-09-15T03:17:38Z) - Towards "Differential AI Psychology" and in-context Value-driven Statement Alignment with Moral Foundations Theory [0.0]
本研究は,Moral Foundationのアンケートにおいて,パーソナライズされた言語モデルと調査参加者のアライメントについて検討する。
我々は、異なる政治的ペルソナにテキスト・トゥ・テキスト・モデルを適用し、繰り返しアンケートを行い、ペルソナとモデルの組み合わせの合成人口を生成する。
その結果, 適応型モデルでは, 政治的イデオロギーに対する調査をリードする評価が困難であることが示唆された。
論文 参考訳(メタデータ) (2024-08-21T08:20:41Z) - Representation Bias in Political Sample Simulations with Large Language Models [54.48283690603358]
本研究は,大規模言語モデルを用いた政治サンプルのシミュレーションにおけるバイアスの同定と定量化を目的とする。
GPT-3.5-Turboモデルを用いて、米国選挙研究、ドイツ縦割り選挙研究、ズオビアオデータセット、中国家族パネル研究のデータを活用する。
論文 参考訳(メタデータ) (2024-07-16T05:52:26Z) - Modelling Human Values for AI Reasoning [2.320648715016106]
我々は,その明示的な計算表現のために,人間の値の形式モデルを詳述する。
我々は、このモデルが、価値に対するAIベースの推論の基礎となる装置をいかに提供できるかを示す。
我々は、AIにおける人間の価値を統合し、学際的に研究するためのロードマップを提案する。
論文 参考訳(メタデータ) (2024-02-09T12:08:49Z) - Bias and Fairness in Large Language Models: A Survey [73.87651986156006]
本稿では,大規模言語モデル(LLM)のバイアス評価と緩和手法に関する総合的な調査を行う。
まず、自然言語処理における社会的偏見と公平性の概念を統合し、形式化し、拡張する。
次に,3つの直感的な2つのバイアス評価法と1つの緩和法を提案し,文献を統一する。
論文 参考訳(メタデータ) (2023-09-02T00:32:55Z) - Training Socially Aligned Language Models on Simulated Social
Interactions [99.39979111807388]
AIシステムにおける社会的アライメントは、確立された社会的価値に応じてこれらのモデルが振舞うことを保証することを目的としている。
現在の言語モデル(LM)は、トレーニングコーパスを独立して厳格に複製するように訓練されている。
本研究は,シミュレートされた社会的相互作用からLMを学習することのできる,新しい学習パラダイムを提案する。
論文 参考訳(メタデータ) (2023-05-26T14:17:36Z) - Stable Bias: Analyzing Societal Representations in Diffusion Models [72.27121528451528]
本稿では,テキスト・ツー・イメージ(TTI)システムにおける社会的バイアスを探索する新しい手法を提案する。
我々のアプローチは、プロンプト内の性別や民族のマーカーを列挙して生成された画像の変動を特徴づけることに依存している。
我々はこの手法を利用して3つのTTIシステムによって生成された画像を分析し、そのアウトプットが米国の労働人口層と相関しているのに対して、彼らは常に異なる範囲において、限界化されたアイデンティティを低く表現している。
論文 参考訳(メタデータ) (2023-03-20T19:32:49Z) - Learning affective meanings that derives the social behavior using
Bidirectional Encoder Representations from Transformers [0.0]
Affect Control Theory (ACT)は、潜在的な相互作用を示すために感情を使用する。
モデルは感情的意味を推定する際に最先端の精度を達成する。
論文 参考訳(メタデータ) (2022-01-31T19:58:28Z) - Towards Understanding and Mitigating Social Biases in Language Models [107.82654101403264]
大規模事前訓練言語モデル(LM)は、望ましくない表現バイアスを示すのに潜在的に危険である。
テキスト生成における社会的バイアスを軽減するためのステップを提案する。
我々の経験的結果と人的評価は、重要な文脈情報を保持しながらバイアスを緩和する効果を示す。
論文 参考訳(メタデータ) (2021-06-24T17:52:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。