MultiMed: Massively Multimodal and Multitask Medical Understanding
- URL: http://arxiv.org/abs/2408.12682v1
- Date: Thu, 22 Aug 2024 18:41:36 GMT
- Title: MultiMed: Massively Multimodal and Multitask Medical Understanding
- Authors: Shentong Mo, Paul Pu Liang,
- Abstract summary: MultiMed is a benchmark designed to evaluate and enable large-scale learning across a wide spectrum of medical modalities and tasks.
It consists of 2.56 million samples across ten medical modalities such as medical reports, pathology, genomics, and protein data.
Using MultiMed, we conduct comprehensive experiments benchmarking state-of-the-art unimodal, multimodal, and multitask models.
- Score: 41.160488390597905
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Biomedical data is inherently multimodal, consisting of electronic health records, medical imaging, digital pathology, genome sequencing, wearable sensors, and more. The application of artificial intelligence tools to these multifaceted sensing technologies has the potential to revolutionize the prognosis, diagnosis, and management of human health and disease. However, current approaches to biomedical AI typically only train and evaluate with one or a small set of medical modalities and tasks. This limitation hampers the development of comprehensive tools that can leverage the rich interconnected information across many heterogeneous biomedical sensors. To address this challenge, we present MultiMed, a benchmark designed to evaluate and enable large-scale learning across a wide spectrum of medical modalities and tasks. MultiMed consists of 2.56 million samples across ten medical modalities such as medical reports, pathology, genomics, and protein data, and is structured into eleven challenging tasks, including disease prognosis, protein structure prediction, and medical question answering. Using MultiMed, we conduct comprehensive experiments benchmarking state-of-the-art unimodal, multimodal, and multitask models. Our analysis highlights the advantages of training large-scale medical models across many related modalities and tasks. Moreover, MultiMed enables studies of generalization across related medical concepts, robustness to real-world noisy data and distribution shifts, and novel modality combinations to improve prediction performance. MultiMed will be publicly available and regularly updated and welcomes inputs from the community.
Related papers
- MedViLaM: A multimodal large language model with advanced generalizability and explainability for medical data understanding and generation [40.9095393430871]
We introduce MedViLaM, a unified vision-language model towards a generalist model for medical data.
MedViLaM can flexibly encode and interpret various forms of medical data, including clinical language and imaging.
We present instances of zero-shot generalization to new medical concepts and tasks, effective transfer learning across different tasks, and the emergence of zero-shot medical reasoning.
arXiv Detail & Related papers (2024-09-29T12:23:10Z) - Automated Ensemble Multimodal Machine Learning for Healthcare [52.500923923797835]
We introduce a multimodal framework, AutoPrognosis-M, that enables the integration of structured clinical (tabular) data and medical imaging using automated machine learning.
AutoPrognosis-M incorporates 17 imaging models, including convolutional neural networks and vision transformers, and three distinct multimodal fusion strategies.
arXiv Detail & Related papers (2024-07-25T17:46:38Z) - Practical Applications of Advanced Cloud Services and Generative AI Systems in Medical Image Analysis [17.4235794108467]
The article explores the transformative potential of generative AI in medical imaging, emphasizing its ability to generate syntheticACM-2 data.
By addressing limitations in dataset size and diversity, these models contribute to more accurate diagnoses and improved patient outcomes.
arXiv Detail & Related papers (2024-03-26T09:55:49Z) - Towards Generalist Biomedical AI [28.68106423175678]
We introduce Med-PaLM Multimodal (Med-PaLM M), our proof of concept for a generalist biomedical AI system.
Med-PaLM M is a large multimodal generative model that flexibly encodes and interprets biomedical data.
We conduct a radiologist evaluation of model-generated (and human) chest X-ray reports and observe encouraging performance across model scales.
arXiv Detail & Related papers (2023-07-26T17:52:22Z) - BiomedGPT: A Generalist Vision-Language Foundation Model for Diverse Biomedical Tasks [68.39821375903591]
Generalist AI holds the potential to address limitations due to its versatility in interpreting different data types.
Here, we propose BiomedGPT, the first open-source and lightweight vision-language foundation model.
arXiv Detail & Related papers (2023-05-26T17:14:43Z) - Incomplete Multimodal Learning for Complex Brain Disorders Prediction [65.95783479249745]
We propose a new incomplete multimodal data integration approach that employs transformers and generative adversarial networks.
We apply our new method to predict cognitive degeneration and disease outcomes using the multimodal imaging genetic data from Alzheimer's Disease Neuroimaging Initiative cohort.
arXiv Detail & Related papers (2023-05-25T16:29:16Z) - Towards Medical Artificial General Intelligence via Knowledge-Enhanced
Multimodal Pretraining [121.89793208683625]
Medical artificial general intelligence (MAGI) enables one foundation model to solve different medical tasks.
We propose a new paradigm called Medical-knedge-enhanced mulTimOdal pretRaining (MOTOR)
arXiv Detail & Related papers (2023-04-26T01:26:19Z) - Specialty-Oriented Generalist Medical AI for Chest CT Screening [14.31187762890342]
We propose the first-of-its-kind medical multimodal-multitask foundation model (M3FM) with application in lung cancer screening and related tasks.
M3FM consistently outperforms the state-of-the-art single-modal task-specific models.
As a specialty-oriented generalist medical AI model, M3FM paves the way for similar breakthroughs in other areas of medicine.
arXiv Detail & Related papers (2023-04-03T20:19:56Z) - BiomedCLIP: a multimodal biomedical foundation model pretrained from
fifteen million scientific image-text pairs [48.376109878173956]
We present PMC-15M, a novel dataset that is two orders of magnitude larger than existing biomedical multimodal datasets.
PMC-15M contains 15 million biomedical image-text pairs collected from 4.4 million scientific articles.
Based on PMC-15M, we have pretrained BiomedCLIP, a multimodal foundation model, with domain-specific adaptations tailored to biomedical vision-language processing.
arXiv Detail & Related papers (2023-03-02T02:20:04Z) - Deep Multi-modal Fusion of Image and Non-image Data in Disease Diagnosis
and Prognosis: A Review [8.014632186417423]
The rapid development of diagnostic technologies in healthcare is leading to higher requirements for physicians to handle and integrate the heterogeneous, yet complementary data produced during routine practice.
With the recent advances in multi-modal deep learning technologies, an increasingly large number of efforts have been devoted to a key question: how do we extract and aggregate multi-modal information to ultimately provide more objective, quantitative computer-aided clinical decision making?
This review will include the (1) overview of current multi-modal learning, (2) summarization of multi-modal fusion methods, (3) discussion of the performance, (4) applications in disease diagnosis and prognosis, and (5) challenges and future
arXiv Detail & Related papers (2022-03-25T18:50:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.